Dr. AMBEDKAR GOVERNMENT ARTS COLLEGE (AUTONOMOUS) CHENNAI - 600 039

(Accredited by NAAC at level "B")

M. Sc (Computer Science)

FOR CANDIDATES ADMITTED FROM 2022-23 ONWARDS Syllabus

Under Choice Based Credit System

LEARNING OUTCOMES BASED CURRICULUM FRAMEWORK (LOCF)

PG & RESEARCH DEPARTMENT OF COMPUTER SCIENCE

Based on UGC – Learning Outcomes-Based Curriculum Framework

(For the candidates admitted from the academic year 2022-2023 onwards)

Sem.	Par t	Course	Subject code	Course Title	Ins. Hrs/	Credit	Exam Hrs	Ma	arks	Total
NO	ι		code		Week		ПІ	Int	Ext	
	A	CC-I	22PACSC1	Advanced Java 5 4 Programming		3	25	75	100	
	A	CC-II	22PACSC2	Advanced Web Technology	5	4	3	25	75	100
	A	CC-III	22PACSC3	Design and Analysis of Algorithms	5	4	3	25	75	100
I	A	CCP-IV	22PACSC4	Advanced Java Programming Lab	4	3	3	40	60	100
	A	CCP-V	22PACSC5	Advanced Web Technology Lab	4	3	3	40	60	100
	A	CEC-I	*	Any one from Elective-I Subjects	5	3	3	25	75	100
	В	SBE - I	22PASBE1	Employability Skills Total	2 30	2 23	3	25	75	100
	A	CC-VI	22PBCSC1	Machine Learning	5	4	3	25	75	100
	A	CC-VII	22PBCSC2	Principles of Compiler Design	5	4	3	25	75	100
	A	CC-VIII	22PBCSC3	Object Oriented System Development	4	3	3	25	75	100
II	A	CCP-IX	22PBCSC4	Machine Learning using Python Lab	4	3	3	40	60	100
11	A	CEC-II	**	Any one from Elective-II Subjects	4	3	3	25	75	100
	A	CEC-III	***	Any one from Elective- III Subjects	4	3	3	25	75	100
	A	EDS-I	22PBCSD1	Advanced Web Design	2	3	3	25	75	100
	В	SBE - II	22PBSBE2	Leadership and Communication Skills	2	2	3	25	75	100
				Total	30	25				
	A	CC-X	22PCCSC1	Digital Image Processing	5	4	3	25	75	100
	A	CC-XI	22PCCSC2	Internet of Things	5	4	3	25	75	100
	A	CC-XII	22PCCSC3	Software Project Management	4	3	3	25	75	100
III	A	CC-XIII	22PCCSC4	Statistics for Data Science	4	3	3	25	75	100
	A	CCP- XIV	22PCCSC5	Digital Image Processing Lab	4	3	3	40	60	100
	A	CEC-IV	****	Any one from Elective-	4	3	3	25	75	100

				IV Subjects						
	A	EDS-II	22PCCSD2	Cyber Security	2	3	3	25	75	100
	В	SBE - III	22PCSBE3	Managerial Skills	2	2	3	25	75	100
	С	Internship	22PCINT1	Internship	-	2	-	-	-	-
				Total	30	27				
	A	CEC-V	22PDCSP1	Project Work	-	15	3	75	225	300
IV	В	SBE - IV	22PDSBE4	Personality Development	2	2	3	25	75	100
				Total	2	17				
				Overall Total	92	92				

CORE ELECTIVE COURSES:

*Elective - I (Any one subject of the following Core Elective chosen by the candidate)		**Elective - II (Any one subject of the following Core Elective chosen by the candidate)		
Sub. Code	o. Code Core Elective Courses		Core Elective Courses	
22PACSE1A	Cloud Computing	22PBCSE2A	Optimization Techniques	
22PACSE1B	Data Mining and Data Warehousing	22PBCSE2B	Scientific Computing Methods	
22PACSE1C	Information Security	22PBCSE2C	Big Data Analytics	

` •	***Elective - III ne subject of the following Core ive chosen by the candidate)	****Elective - IV (Any one subject of the following Core Elective chosen by the candidate)		
Sub. Code Core Elective Courses		Sub. Code	Core Elective Courses	
22PBCSE3A	Wireless Networks	22PCCSE4A	Embedded Systems	
22PBCSE3B	Block Chain Technology	22PCCSE4B	Web Services	
22PBCSE3C	Advanced Database Management	22PCCSE4C	Soft Computing	
	Systems			

SEMESTER-I

First Semester							
Course Title		ADVANCED JAVA PROGRAMMING					
Course Code		22PACSC1					
Course No	Course Category	No of Credits	No of hrs /week	Total marks			
	Core / Elective /			(Internal+External)			
CC I	Core	4	5	25 + 75=100			

COURSE OBJECTIVES

- To provide the ability to design a console based, GUI based and web based advanced applications.
- Students will also be able to understand integrated development environment to create, debug and run multi-tier and enterprise-level applications
- To develop distributed applications
- Analyzing different problems in Web Applications and providing solutions
- Applying the knowledge to develop Web Applications for industries and individuals.

UNIT - I 15 Hours

Servlet : Introduction – Servlet Architecture - Servlet Life Cycle-Generic Servlet, Http Servlet-Performing URL redirection-Session Tracking-Cookies-Using JDBC in Servlets

UNIT - II 15 Hours

JDBC: Introduction – JDBC Architecture-Types of Drivers-Statement- Result set - Prepared Statement-Batch Update - Callable Statement-Creating a New Database and Table with JDBC.

UNIT - III 15 Hours

Java Beans: Introduction –Advantage of java bean -The Component Model-JavaBeans Architecture-Writing simple beans.

EJB: EJB Component Model-Need for Enterprise JavaBeans-Enterprise Java Bean Architecture-Classification of Enterprise Java bean -Entity Beans-Session Bean-Message driven beans.

UNIT - IV 15 Hours

RMI-Overview — Developing Applications with RMI: Declaring & Implementing Remote Interfaces-Stubs & Skeletons, Registering Remote Objects, Writing RMI Clients —Pushing Data from RMI Servlet.

UNIT - V 15 Hours

JSP:Introduction JSP-JSP Life Cycle - Examining MVC and JSP - JSP Scripting Elements & Directives - Working with Variables Scopes - Error Pages - Using Java Beans in JSP.

TEXT BOOKS

- **1.** J. McGovern, R. Adatia ,Y. Fain and et al, "J2EE 1.4 Bible", Wiley India Pvt. Ltd; 2003.
- 2. H. Schildt, "Java 2: "The Complete Reference", 5th Edition, Tata McGraw -Hill, 2002.

REFERENCE BOOKS

- 1. Janson Hunter, "Java Servlet Programming", 2nd Edition, O' Reilly Media, 2007.
- 2. H. M. Deitel and P. J. Deitel, "JAVA: How to Program", 6th Edition, PHI, 2005. **A.** R. Callaway, "Inside Servlets", Pearson Education, 2007.
- 3. Joseph O'Neil, "JavaBeans from the Ground Up", Tata McGraw Hill, 1998.
- 4. Tom Valesky, "Enterprise JavaBeans", Pearson Education, 2008.

WEB RESOURCES

- 1. https://www.edureka.co/blog/advanced-java-tutorial
- 2. https://www.javatpoint.com/jsp-tutorial
- 3. https://www.javatpoint.com/servlet-tutorial
- 4. https://www.javatpoint.com/RMI

METHODOLOGY OF TEACHING

Chalk and Talk method, Power point presentation, seminars, flipped learning, quiz, Assignment

COURSE OUTCOMES (COs):

Upon completion of this course, the students

CO	COURSE OUTCOME	K- LEVELS
CO1	Define Servlets and classify the different types of Servlets and apply them to understand and Develop programs using servlets and to Create cookies, construct databases and their connectivity using Servlets	K1,K2,K3,K4
CO2	Study the basics of JDBC, construct databases and their connectivity and apply them to develop programs using JDBC.	K1,K2,K3,K6
CO3	Understand ,Design and Develop programs using Java Beans and Enterprise Java Bean	K1,K2,K3,K6
CO4	Study the basic concepts of RMI .Analyze and Apply the concepts of RMI to develop an application	K1,K2,K3,K4
CO5	Explain the different types of JSP tags. Analyze and Apply them to Develop JSP programs.	K1,K2,K3,K4,K6

K1- Remembering , K2- Understanding , K3- Applying , K4- Analysing , K5- Evaluating , \qquad Creating.

CO- PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	1	1	3
CO2	3	2	2	2	1	3
CO3	3	3	3	2	1	3
CO4	3	3	3	2	1	3
CO5	3	3	3	2	1	3
Total	15	14	13	9	5	15
Average	3	2.8	2.6	1.8	1	3

- 1-Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total			
			_	Marks			
K1, K2, K3, K4	A	10 x 2	Short Answer	20			
	(Answer all the		(Two questions				
	questions)		from each unit)				
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25			
K5	(INTERNAL		(b)				
	CHOICE)		from the same				
	EITHER (a) OR (b)		Unit				
			and same K Level				
K2, K3, K4, K5,	C	3 x 10	One questions	30			
K6	(Answer any three		from each unit				
	question from five		(No unit missing)				
	questions)						
	Grand Total						

First Semester								
Course Title ADVANCED WEB TECHNOLOGY								
Course Code 22PACSC2								
Course	Core category	No. of Credits	No. of Hrs / Week	Total Marks				
number				(Internal+External)				
CC – II	Core	4	5	25+75				

COURSE OBJECTIVES

- To understand the fundamentals of .NET frame work and basics of C# Language.
- To explore C#.NET technologies for designing and developing dynamic, interactive and responsive web applications using HTML and Web server controls.
- To impart the knowledge of event handling, Exception handling and Page tracing.
- To learn how to maintain the session state and application state while developing web application.
- To apply the concept of C#.NET technology in the real-world scenario.

UNIT – I 15 Hours

OVERVIEW OF ASP.NET: .NET Frame work-Common Language Runtime- .NET Class Library. **C#**: C# Language Basics- Variables and Data types-Variable Operations-Conditional Logic-Loops-Methods-Building Basic Class-Value types and Reference types-Understanding Namespaces and Assemblies.

UNIT – II 15 Hours

Developing ASP.NET Applications: The Anatomy of a Web Form- Writing Code - The Anatomy of an ASP.NET Application- HTML Server controls - The HTML Control Classes - Page Class-Application Events. **Web Controls**: Basic Web Control Classes.

UNIT – III 15 Hours

Web Controls: Web Control Classes-List Controls-Table Controls-Web Control Events and AutoPostBack. **Error Handling:** The Exception Class - The Exception Chain. Handling Exception: Catching Specific Exceptions - Nested Exception Handlers - Exception Handling in Action - Throwing Your Own Exceptions. **Page Tracing**: Enabling Tracing - Tracing Information - Writing Trace Information - Application-Level Tracing.

UNIT – IV 15 Hours

State Management: View State-Transferring information between Pages-Cookies-Session States- Session States Configuration- Application State-**Validation**: Understanding Validation - The Validation Controls. **Rich Controls**: Calendar-AdRotator-Pages with multiple Views-User Controls.

UNIT – V 15 Hours

ADO.NET: The Data Provider Model- Direct Data Access- Disconnected Data Access-Data Binding: Single Value Data Binding-Repeated Value Data Binding-Data Controls: Grid View- Formatting the Grid View-Selecting a Grid View Row-Editing with the Grid View-Sorting and Paging the Grid View. Files and Streams: File System Information-Reading and Writing with Streams- Allowing File Uploads.

TEXT BOOK

Matthew MacDonald, "Beginning ASP.NET 4 in C# 2010", APRESS, 2010.

REFERENCE BOOKS

- 1. Matthew MacDonald," Pro ASP.NET 4 in C# 2010", APRESS, 2010.
- 2. Bill Evjen, Scott Hanselman, "Professional ASP.NET 3.5 in C# and VB", Wrox Publication, 2011
- 3. Imar Spaanjaars, "Beginning ASP.NET 4 in C# and VB", Wrox Publication, 2010

WEB REFERENCES

- 1. https://freevideolectures.com/course/3565/asp-net
- 2. https://link.springer.com/content/pdf/bfm%3A978-1-4302-2609-3%2F1.pdf
- 3. https://www.youtube.com/watch?v=aLyBE6rJdD4&list=PL6n9fhu94yhXQS_p1i-HLIftB9Y7Vnxlo&index=2

METHODOLOGY OF TEACHING

• Lectures, Assignments, Group discussions, Seminar, Quiz, Home work

COURSE OUTCOME (COs)

At the end of the Course, the Student will be able to:

CO	COURSE OUTCOME	K- LEVELS		
CO1	Identify the need for .NET framework and C#. Explain the C# program	V1 V2 V2		
	construct to build console application.	K1, K2,K3		
CO ₂	Compare the HTML and Web Server control and select best one to			
	develop web applications. Analyze the domain to find solution through	K1, K2,K3,K4		
	program.			
CO ₃	Identify runtime error and classify them. Summarize the advantages of	K2, K3,K4		
	tracing.	K2, K3,K4		
CO4	Make use of managing states between different web pages and			
	applications. Evaluate the user data using validation controls.	K3,K4,K5		
	Discover the suitable rich controls to create applications like	133,134,133		
	advertisement.			
CO ₅	Judge the value of database connectivity and .NET technology to apply	K5		
	in real-world scenario.	N3		
K1-Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating				

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	3	2	2	1
CO2	2	2	2	3	1	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	3	2
CO5	2	3	3	3	2	1
Total	13	14	14	12	10	6
Average	2.6	2.8	2.8	2.4	2	1.2

- 1-Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
			•	Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	С	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

First Semester						
Course Title DESIGN AND ANALYSIS OF ALGORITHMS						
Course Code 22PACSC3						
Course No	Course Category Core / Elective	No of Credits	No of hrs / week	Total Marks (Internal+ External)		
CC-III	Core	4	5	25+75 = 100		

COURSE OBJECTIVES

To learn effective problem solving in computing applications using different algorithmic design techniques and analyze the algorithmic procedure to determine the computational complexity of algorithms.

UNIT - I 16 Hours

Introduction: Definition - Characteristics - Algorithm Specification - Performance Analysis-Asymptotic Notations. Elementary Data Structures: Stacks and Queues - Trees - Graphs

UNIT- II 13 Hours

Divide and Conquer: The General Method – Binary Search – Finding The Maximum and Minimum – Merge Sort – Quick Sort – Selection - Strassen's Matrix Multiplication.

UNIT- III 16 Hours

The Greedy Method: General Method - Knapsack Problem - Tree Vertex Splitting – Job Sequencing With Deadlines - Minimum Cost Spanning Trees – Prim's method, Krushakal Algorithms - Single Source Shortest Paths.

UNIT- IV 15 Hours

Dynamic Programming: The General Method – Multistage Graphs – All-Pairs Shortest Paths - String Editing - 0/1 Knapsack - The Traveling Salesperson Problem.

UNIT- V 15 Hours

Backtracking: The General Method – The 8-Queens Problem – Sum of Subsets – Graph Coloring – Hamiltonian Cycles – Knapsack Problem. **Branch and Bound**: General Method - 0/1 Knapsack Problem.

TEXT BOOK

1. Ellis Horowitz, Satraj Sahni and Sanguthevar Rajasekaran, "Fundamentals of Computer Algorithms", Universities Press, Second Edition, Reprint 2009.

REFERENCES BOOKS

- 1. V.Aho, Hopcropft, Ullman, "Data structures and Algorithms", LPE
- 2. S.E. Goodman, ST. Hedetniem, "Introduction to design and Analysis of Algorithms", TMH.

WEB RESOURCES

1. https://nptel.ac.in/courses/106105164

METHODOLOGY OF TEACHING

Class Lecturers, Assignments, Group Discussion, Quiz, Seminar

COURSE OUTCOMES (Cos)

Upon completion of this course, the students are able to

CO	COURSE OUTCOME	K- LEVELS
CO1	Define, What is an algorithm and Illustrate about various	K1, K2, K4, K5
	elementary data structures, Analyse the time complexities of	
	various algorithm Choose the best data structure for the real	
	life applications	
CO ₂	Define What is divide and conquer method apply the methods	K1, K3, K5
	to solve simple problems. Identify the problem and choose the	
	appropriate methodology to solve it	
CO ₃	Define the greedy method and list and explain some	K1, K2, K4
	applications, compare their performance.	
CO4	Define and Apply dynamic programming technique to solve	K1, K3, K5
	some problems, study the importance of shortest path	
	problems	
CO5	Tell what kind of problems does the back tracking method is	K1,K3, K6
	suitable by apply the method to different problems, able to	
	choose the best methods to solve the real time problems	
K1 – Ren	embering , K2– Understanding , K3 –Applying ,K4 –Analysing , I	K5–Evaluating ,
K6-Creat	ing	

CO-PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	0	2	3	3
CO2	3	3	0	2	2	3
CO3	3	3	0	2	2	3
CO4	3	3	1	2	2	3
CO5	3	3	1	3	2	3
Total	15	15	2	11	11	15
Average	3	3	0.4	2.2	2.2	3

- 1-Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
				Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	С	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

First Semester					
Course Title 22PACSC4					
Course Code ADVANCED JAVA PROGRAMMING LAB					
Course No	Course Category Core / Elective	No of Credits	No of hrs /week	Total marks (Internal+External)	
CCP-IV	Core	3	4	40 + 60=100	

COURSE OBJECTIVES

- Student will be able to use advanced technology in Java such as Remote method Invocation, JSP.
- Student will be able to develop web application using Java Servlet.
- Students will also be able to understand integrated development environment to create, debug and run enterprise-level applications using Enterprise java bean.

LAB EXERCISES

- 1. HTML to Servlet Communication
- 2. Designing Online Applications with JSP
- 3. Creating JSP program using JavaBeans
- 4. Working with Enterprise JavaBeans
- 5. Performing Java Database Connectivity.
- 6. Implement a Client/Server application using RMI.
- 7. Update a given Table using Batch Update.
- 8. Designing Employee Details Applications with JSP.
- 9. Program for Payroll using JDBC.
- 10. Creating Mark Sheet using Tables with JSP.

COURSE OUTCOMES (COs)

Upon completion of this course, the students

CO	COURSE OUTCOME	K- LEVELS
CO1	Recall the concepts of Servlets and realize them using Generic and	K1,K2,K3,K6
	Http Servlets and Create cookies, construct databases and their	
	connectivity using Servlets.	
CO2	Recall the concepts of JDBC and realize them by developing	K1,K,K3,K4
	JDBC applications, construct databases and their connectivity	
	using JDBC.	
CO3	Understand the basics of EJB,RMI,JSP, Realize and Develop	K1,K,K3,K6
	simple and EJB programs, RMI Programs, JSP Programs	
K1 – Rem	embering, K2 – Understanding, K3 –Applying, K4 –Analysing, K5 –	-Evaluating , K6 –
Creating.		

CO- PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	2	2	1
CO2	3	2	2	2	2	1
CO3	3	3	3	2	2	2
Average of CO-PSO	3	2.6	2.3	2	2	1.3
Mapping						
Total of CO-PSO	9	8	7	6	6	4
Mapping						

- 1-Low,
- 2 Medium,

3 - High, 0 - No Correlation

First Semester						
Course Title ADVANCED WEB TECHNOLOGY LAB						
Course Code		22PACSC5				
Course No	Core category	No. of Credits No. of Hrs / Week Total Marks (Internal				
		+External)				
CCP-V	Core	3	4	40+60		

COURSE OBJECTIVES

- To implement console applications using C#.
- To create simple web applications using C#.NET.
- To develop web applications using Error handling and Page tracing.
- To implement web applications to validate user input.
- To develop web applications using database.

C#

- 1. Create a simple class for Employee using appropriate data members and member functions.
- 2. Write a C# Sharp program to sort a list of elements using Quick sort.
- 3. Write a C# Sharp program to sort a list of elements using Merge sort.
- 4. Write a C# Sharp program to illustrate multilevel inheritance.
- 5. Write a C# Sharp program to search key element in the given list of elements using binary search.

C#.NET

- 6. Create an application form to apply for a new course in a college, fill the information and submit it (Use Basic Web Server controls).
- 7. Design Sign Up form and validate User Name (Minimum 8 character Maximum 15 and only characters and underscore), Password (Minimum 8 Characters) and Confirm Password (Both should be same), Phone No (Only digits), Email-id etc. (Use Validation controls).
- 8. Design a web page using C#.Net to illustrate Exception handling in Block level and Page level.
- 9. Write a C#.net program to demonstrate application state and view state management.
- 10. Create a web form for Online Library data entry (Use Application/Session Variables).
- 11. Develop an application to illustrate the usage of Request and Response Objects in ASP.NET.
- 12. Create an employee database and manipulate the records.
- 13. Create a student database and manipulate the records.
- 14. Create a web page to demonstrate DataGrid control.
- 15. Create a web page to demonstrate Grid View control.

COURSE OUTCOME (COs)

At the end of the Course, the Student will be able to:

CO code	Course Outcomes	K-levels			
CO1	Recall the basics of C# language and apply to implement programs.	K1,K2			
CO2	Apply the syntax of HTML and Web server controls with coding techniques and experiment their functionalities.	К3			
CO3	Analyze the domain and develop C#.NET web applications using SQL Server database.	K4			
K1 – Remembering, K2– Understanding, K3 – Applying, K4 – Analysing, K5–Evaluating, K6–					
Creating					

CO- PO Mapping (Course Articulation Matrix)

CO / PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	3	2	2	1
CO2	3	2	2	3	1	1
CO3	3	3	3	2	2	1
Total	9	8	8	7	5	3
Average	3	2.67	2.67	2.33	2.3	1

- 1– Low,
 2 Medium,
 3 High,
 0 No Correlation

First Semester						
Course Title		CLOUD COMPUTING				
Course Code 22PACSE1A						
Course No	Course Category Core / Elective /	No of Credits	No of hrs /week	Total marks (Internal+External)		
CEC-I	Elective	3	5	25 + 75=100		

COURSE OBJECTIVES

- To understand the concept of cloud computing.
- To illustrate the evolution of cloud from the existing technologies.
- To understand the concept of Virtualization and design of cloud Services
- To elaborate the usage of cloud in various applications.

UNIT – I: Basics of Cloud Computing:

15 Hours

Introduction – Essentials of Cloud Computing – Needs of Cloud Computing- History of Cloud Computing- Benefits of Cloud Computing – Limitations of Cloud Computing- Vendors of Cloud Computing- Elastic Computing- Social Networking- Enterprise Cloud Computing. Factors that affect cloud computing: Cloud Data center requirements- Influence of Cloud Computing on Business Companies.

UNIT - II: Architecture of Cloud Computing

15 Hours

Introduction- Grid architecture- Cloud Computing Architecture –Similarities and differences between grid and cloud computing- Characteristics of Cloud Computing. Models of cloud computing: Cloud service models – cloud computing sub services models- cloud deployment models.

UNIT – III: Data Center and Virtualization Technology

15 Hours

Cloud Data Center: Introduction – Cloud data center elements – Storage network technologies. Virtualization Technology: Introduction – virtualization reference model – advantages of virtualization- server/compute virtualization – Need and advantage of Server/compute virtualization- Techniques of server/compute virtualization- types of virtualizations- exploring network virtualization – tools used in network virtualization – benefits of network virtualization – Understanding desktop virtualization – techniques used for desktop virtualization – Components used for desktop virtualization.

UNIT - IV: Cloud Security and Advanced Technologies

15 Hours

Security issues of Cloud Computing: Introduction – security concerns of cloud computing – cloud information security objectives- cloud security design principles – cloud security services – secure cloud software testing – cloud architectural consideration-VM security Recommendations-Challenges to cloud security. Advanced technologies in Cloud Computing: Security clouds – app-specific cloud- mobile cloud computing – Big table – cloud usage for big data analytics and IoT.

UNIT - V: Cloud Application Case Studies

15 Hours

Case Studies: Cloud for Manufacturing Industry – Cloud for Healthcare – Cloud for Education – cloud for energy systems – cloud for transportation systems- Live video streaming APP.

TEXT BOOKS

- 1. Shailendra Singh, "Cloud Computing", Oxford University Press, 2018.
- 2. Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012

REFERENCE BOOKS

1. Barrie Sosinsky," Cloud Computing Bible", Wiley Publishing Inc, 2013.

- 2. John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation, Management, and Security", CRC Press, 2010.
- 3. Michael Miller, "Cloud Computing Web Based Applications that change the way you work and collaborate online", Pearson Education, 2019.

WEB REFERENCES

- 1. https://nptel.ac.in/courses/106/105/106105167/
- 2. https://www.tutorialspoint.com/cloud_computing/index.html
- 3. https://www.guru99.com/cloud-computing-for-beginners.html
- 4. https://www.youtube.com/watch?v=LICA-ILkO4w

METHODOLOGY OF TEACHING

Class lectures, Group Discussion, Assignments, Quiz.

COURSE OUTCOMES (COs)

Upon completion of this course, the students

CO	COURSE OUTCOME	K- LEVELS
	Define the core concepts of the cloud computing paradigm:	
CO1	Evolution, need, and summarize its advantages, limitations	K1, K2, K3
	and explain the factors that affect cloud computing.	
	Show the differences between grid and cloud architecture	
CO ₂	and experiment with different service models and	K2, K3
	deployment models.	
CO3	Construct and examine the ability to understand	W2 W4
COS	virtualization technology used in cloud.	K3, K4
CO4	Infer and evaluate the knowledge of various security	TZ 4 TZ 5
CO4	techniques used in cloud computing.	K4, K5
CO5	Justify the importance of cloud in various applications.	K5
K1 – Remo	embering, K2 – Understanding, K3 –Applying, K4 –Analysing, K5 –E	Evaluating , K6 –
Creating.		-

CO- PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	3	2	2	1
CO2	3	2	2	3	1	1
CO3	3	3	3	2	2	-
CO4	2	3	3	2	3	2
CO5	3	2	1	3	2	1
Total	14	13	12	12	10	5
Average	2.8	2.6	2.4	2.4	2	1

- 1-Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
			•	Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	C	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

	First Semester					
Course Title DATA MINING						
Course Code	Course Code 22PACSE1B					
Course	Core category	No. of Credits	No. of Hrs /	Total Marks		
number			Week	(Internal+External)		
CEC-I	Elective	3	5	25+75		

COURSE OBJECTIVES

- To introduce the basic concepts of Data Mining
- To study the various techniques of Data mining
- To learn various algorithms used for Information Retrieval from Datasets

UNIT – I 15 Hours

Introduction: Data mining – Kind of Data – Kinds of Patterns – Major issues in Data mining – Data Warehouse - Introduction of Functionalities – Classification – Introduction to Data Warehousing – Modeling: Data cube and OLAP

UNIT - II 15 Hours

Data Preprocessing: Preprocessing the Data – Data cleaning – Data Integration, Data reduction Data Transformation and Data discretization.

UNIT – III 15 Hours

Mining Association Rules: Basic Concepts - Frequent item set mining - Mining Multilevel associations - Mining Multi dimensional associations - Mining Quantitative associative rules - mining rare patterns and negative patterns

UNIT – IV 15 Hours

Classification and Prediction: Introduction – Decision Tree Induction – Bayesian Classification – Rule based Classification - Classification of Back Propagation. Prediction – Classifier Accuracy.

UNIT - V 15 Hours

Cluster Analysis: Introduction – Types of Data in Cluster Analysis – Requirements of Cluster analysis - Partitioning Methods – Hierarchical Methods - Density Based Methods – Data mining applications.

TEXT BOOK

1. J.Han and M. Kamber, "Data Mining Concepts and Techniques", Second Edition, Morgan Kaufmann Publishers

REFERENCE BOOKS

- 1. K.P. Soman, Shyam Diwakar, V.Ajay "Insight into Data Mining Theory and Practice ", Prentice Hall of India Pvt. Ltd, New Delhi
- Margaret H Dunham, S. Sridhar, "Data mining Introductory and advanced topics", Pearson Education 2008

WEB REFERENCES

- https://www.javapoint.com/data mining-tutorial.
- Nptel course titled Data Mining.
- https://onlinecourses.swayam2.ac.in/cec20_cs12/

COURSE OUTCOMES (COs)

On completion of the course the students will be able to:

CO	COURSE OUTCOME	K- LEVELS
CO1	Define Data mining and identify different types of data and	K1, K2,K3
	patterns, explain and illustrate the concept of Data warehouse and	
	schemas	
CO2	Acquire the basic knowledge of Data preprocessing and	K1, K2,K3
	understand its need and apply preprocessing techniques	
CO ₃	Acquaint knowledge about Association rules and explain frequent	K1, K2,K3, K4
	item sets, classify different association rules and construct them	
CO4	Gain knowledge about classification and prediction, Compare and	K1, K2,K3, K4
	evaluate various classification algorithms and apply in real time	
	dataset	
CO5	Learn and explain the need for cluster analysis, categorize and	K1, K2, K4, K5
	evaluate clustering algorithms	
K1-Re	emembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-E	valuating, K6-Creating

CO-PO MAPPING COURSE ARTICULATION MATRIX

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	2	2	1	1	1
CO2	3	2	2	2	1	1
CO3	3	2	2	1	1	1
CO4	3	3	2	1	1	1
CO5	2	2	2	1	1	1
Total	13	11	10	6	5	5
Average	2.6	2.2	2	1.2	1	1

- 1-Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
			_	Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	C	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

	9	0				
First Semester						
Course Title INFORMATION SECURITY						
Course Code	Course Code 22PACSE1C					
Course No	Course Category	No of Credits	No of hrs / week	Total Marks		
	Core / Elective			(Internal +		
				External)		
CEC-I	Elective	3	5	25+75 = 100		

COURSE OBJECTIVES

- To understand and apply the models of information security
- To study and analyze cryptographic and forensic methods
- Analyze and simulate the network and application security
- Explore the nature and logic behind security threats on the web as an ethical hacker

UNIT - I 15 Hours

Information Security - Critical Characteristics of Information, NSTISSC Security Model, Components of an Information System, Balancing Security and Access, Security SDLC.

UNIT - II 15 Hours

Cryptography- Classical Cryptography, Symmetric Cryptography, Public Key (Asymmetric cryptography), Modern Cryptography. Forensics: DRM technology, Steganography, Biometrics.

UNIT – III 15 Hours

Network Security- Network Protocols, Wireless Security (WiFi, WiMAX, Bluetooth, cell phone), IDS and IPS, Network Intrusion Management

UNIT - IV 15 Hours

Application Security- Software Security, Mobile Security, and Database Security

UNIT - V 15 Hours

Information Security Threats- Viruses, Worms and other malware, Email Threats, 12 CO6 46 Web Threats, Identity Theft, Data Security Breaches, Ethical Hacking -Hacking Tools and Techniques

TEXT BOOKS

- 1. W. Stallings, "Cryptography and Network Security: Principles and Practice", 6th Edition, Prentice Hall, 2013.
- 2. Michael E Whitman and Herbert J Mattord, "Principles of Information Security", Vikas Publishing House, New Delhi, 2003

REFERENCE BOOKS

- 1. NeilDaswani, ChristophKern, AnitaKesavan, "Foundations of Security: What Every Programme", APRESS, 2007.
- 2. Michael E Whitman and Herbert J Mattord, "Principles of Information Security", Vikas Publishing House, 2003.

WEB REFERENCES

- 1. http://williamstallings.com/Cybersecurity/
- 2. freecomputerbooks.com > compscspecial Security Books

METHODOLOGY OF TEACHING

Class Lecturers, Assignments, Lab exercises, Discussions, seminars, quiz and assessments

COURSE OUTCOMES (COs)

Upon completion of this course, the students are able to

CO	COURSE OUTCOME	K- LEVELS		
CO1	Analyze the broad perceptive and need of information	K1, K2, K4		
	security.			
CO2	Explain the various encryption techniques and illustrate the	K2, K3, K4		
	master fundamentals of secret and public cryptography.			
CO3	Compute the Risk control strategies and Risk Management	K1, K2, K3, K4		
	and compare with Hash Algorithms, Signature and network			
	security designs.			
CO4	Describe the policies of Information Security and hence	K1, K3		
	identify network security designs using available secure			
	solutions			
CO5	illustrate the Intrusion Detection and Prevention Systems and	K1,K2, K4		
	discover the layers of application security			
CO6	Identify different threats and suggest fixes in data and cyber	K1,K2,K3,K5		
	security.			
K1 – Remembering, K2– Understanding, K3 – Applying, K4 – Analysing, K5– Evaluating, K6–				
Creating.				

CO-PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	3	2	3	2	3
CO2	2	3	1	3	1	3
CO3	3	3	3	2	2	2
CO4	3	3	2	1	3	2
CO5	3	3	2	2	2	2
Total	13	15	10	11	10	15
Average	2.6	3	2	2.2	2	3

- 1– Low , 2 Medium ,
- 3 High ,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
			-	Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	C	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

SEMESTER-II

Second Semester					
Course Title MACHINE LEARNING					
Course Code		22PBCSC1			
Course No	Course Category Core / Elective /	No of Credits	No of hrs /week	Total marks (Internal+External)	
CC-VI	Core	4	5	25 + 75=100	

COURSE OBJECTIVES:

- To introduce students to the basic concepts and techniques of Machine Learning.
- To have a thorough understanding of the Supervised and Unsupervised learning techniques
- To study the various probability based learning techniques
- To understand graphical models of machine learning algorithms

UNIT - I 15 Hours

INTRODUCTION: Designing a learning system - Perspectives and Issues in machine learning - Concept learning task - Concept learning as search - Version spaces - Candidate Elimination learning algorithm - Inductive Bias.

UNIT - II 15 Hours

DECISION TREE LEARNING: Decision Tree representation - Appropriate Problems for Decision Tree Learning - Basic Decision tree learning algorithm - Hypothesis space search and Inductive Bias in Decision tree learning - Issues in Decision Tree Learning. **ANN**: Perceptrons - Back propagation Algorithms.

UNIT - III 15 Hours

BAYESIAN LEARNING: Bayes Theorem and Concept learning - Maximum Likelihood and Least Squared error hypothesis - Maximum Likelihood hypotheses for predicting probabilities - Minimum description Length principle - Bayes optimal classifier - Gibbs algorithm - Naïve Bayes classifier - Bayesian Belief networks -EM algorithm.

UNIT - IV 15 Hours

ANALYTICAL AND COMBINING ANALYTICAL AND INDUCTIVE LEARNING: Analytical learning - Explanation based learning - Inductive Analytical approaches to learning - Using prior knowledge to initialize the hypothesis, to alter the search objective.

UNIT - V 15 Hours

INSTANCE-BASED LEARNING AND REINFORCEMENT LEARNING: K - nearest neighbor learning -Locally weighted regression - Radial Basis functions - Case based reasoning - Reinforcement learning: Learning task-Q Learning:Q function - Algorithm for learning Q-convergence - Temporal difference learning.

TEXT BOOK

1. Tom M Mitchell, "Machine Learning", McGraw Hill, 1st Edition, 2003.

REFERENCE BOOKS

- 1. EthemAlpaydin, "Introduction to Machine Learning", MIT Press, 2nd Edition, 2010.
- 2. Stephan Marsland, "Machine Learning An Algorithmic Perspective", Chapman and Hall, 1st Edition, 2009.
- 3. Nils Nilsson, "Introduction to Machine Learning", MIT Press, 1997.
- 4. Jude Shavil, Thomas G Dietterich, "Readings in Machine Learning", Morgan Kaufmann Publishers, 1990.8. Peter Harrington, "Machine Learning in Action", Dream Tech

WEB RESOURCES

- 1. https://nptel.ac.in/courses/106/105/106105152/
- 2. http://www.cs.cmu.edu/~tom/mlbook.html

METHODOLOGY OF TEACHING

Chalk and Talk method, Power point presentation, seminars, flipped learning, quiz, Assignment

COURSE OUTCOMES (COs):

Upon completion of this course, the students

CO	COURSE OUTCOME	K- LEVELS					
CO1	Define and explain the fundamental issues and challenges of	K1,K2,K3,K4					
	machine learning and different learning algorithms and						
	representations. Understand the Knowledge representation issues						
	and concept learning.						
CO2	Define and explain the Decision Tree representation and artificial	K1,K2,K3,K4,K6					
	neural networks. Apply the knowledge gained to develop a system						
CO3	Able to define and explain the BAYES Theorem, Gibbs Algorithm,	K1,K2,K3,K4,K5					
	EM Algorithm. Appreciate the underlying mathematical						
	relationships within and across Machine Learning algorithms and						
	Apply the knowledge gained to develop a system. The result can be						
	analyzed and evaluated.						
CO4	The learners shall understand the machine learning techniques like	K1,K2,K3,K4					
	Analytical and Inductive learning to apply the techniques in						
	computing.						
CO5	The learners shall understand the machine learning techniques like	K1,K2,K3,K4					
	Instance based learning and reinforcement to apply the techniques						
	in computing.						
K1	K1 – Remembering, K2– Understanding, K3 – Applying, K4 – Analysing, K5– Evaluating, K6–						
	Creating						

CO- PO Mapping (Course Articulation Matrix)

20 1 0 Mapping (Course internation Matrix)							
CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	3	3	3	2	2	3	
CO2	3	2	3	2	1	3	
CO3	3	3	3	2	2	2	
CO4	3	3	3	1	1	3	
CO5	3	2	3	1	2	2	
Average of CO-PSO	3	2.6	3	1.6	1.6	2.6	
Mapping							
Total of CO-PSO Mapping	15	13	15	8	8	13	

- 1-Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
			-	Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	С	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

Second Semester						
Course Title	Course Title PRINCIPLES OF COMPILER DESIGN					
Course Code	Course Code 22PBCSC2					
Prerequisite	Prerequisite Data structures, Different Programming Languages					
Course	Core category	No. of Credits No. of Hrs / Week Total Marks				
number				(Internal+External)		
CC – VII	Core	4	5	25+75		

COURSE OBJECTIVES

- To learn the various phases of compiler.
- To learn the various parsing techniques.
- To understand intermediate code generation.
- To learn to implement front-end of the compiler.
- To learn to implement code generator.

UNIT – I LEXICAL ANALYSIS

15 Hours

The Structure of a Compiler – The role of the lexical analyzer - Input buffering - Specification of tokens - Recognition of tokens. **Finite automata:** NFA – Transition tables – Acceptance of input strings by Automata – DFA – Conversion of an NFA to DFA – Minimizing DFA – Simulation of NFA – Construction of NFA from Regular expression.

UNIT – II SYNTAX ANALYSIS

15 Hours

Introduction: Definition – The role of the parser. Context-free grammars: Definition of CFG – Notational Conventions – Derivations – Parse Tree and Derivations – Ambiguity – CFGs Vs REs .Writing a grammar: Lexical versus Syntactic Analysis – Eliminating Ambiguity – Elimination of Left Recursion – Left Factoring. Top down Parsing: Definition – Recursive-Descent parsing – FIRST and FOLLOW – Nonrecursive predictive parsing – LL(1) grammars. Bottom-up Parsing: Definition – Reductions – Handle Pruning – Shift-Reduce Parsing – Conflicts during Shift-Reduce Parsing.

UNIT - III SYNTAX DIRECTED TRANSLATION

15 Hours

Syntax Analysis Continued: LR parsers – Construction of SLR Parsing table – Construction of CLR Parsing table – Construction of LALR Parsing table.

Syntax Directed Translation - Inherited and Synthesized attributes – Dependency graphs – Ordering the evaluation of attributes – S-attributed definitions – L-attributed definitions – Applications of Syntax Directed translation.

UNIT – IV INTERMEDIATE CODE GENERATION

15 Hour

Variants of Syntax trees: DAG for Expressions – The Value Number method for Constructing DAG's. Three Address code: Quadruples, Triples and Indirect Triples. Types and Declarations: Type Expressions – Type Equivalence – Declarations – Storage Layout for Local Names – Sequences of Declarations – Fields in records and classes. Translation of Expressions – Type checking - Control flow - Back patching - Switch Statements - Procedure calls.

UNIT – V CODE GENERATION AND CODE OPTIMIZATION

15 Hour

Issues in the design of a code generator - The target language - Address in the Target Code - Basic Block and Flow graphs - Optimization of Basic Blocks - A simple code generator - Peephole Optimization.

TEXT BOOK

1. Alfred V. Aho, Monica S.Lam, Ravi Sethi and Jeffrey D. Ullman, "Compilers- Principles, Techniques and Tools", Second Edition, Pearson Education Asia, 2009.

REFERENCES BOOKS

- A.V. Aho, Ravi Sethi, J.D. Ullman, Compilers Principles, Techniques and Tools, Addison-Wesley, 2003.
- 2. Kennath C.Louden, Compiler Construction Principles and Practice, Vikas publishing House, 2004.
- 3. S.Godfrey Winster, S.Aruna Devi, R.Sujatha, "Compiler Design", yesdee Publishers, Third Reprint

WEB REFERENCES

- 1. https://nptel.ac.in/courses/106104123
- $2. \quad \underline{https://www.digimat.in/nptel/courses/video/106105190/L02.html}$

METHODOLOGY OF TEACHING

• Lectures, Assignments, Group discussions, Seminar, Quiz, Home work

COURSE OUTCOME (COs)

At the end of the Course, the Student will be able to:

CO	COURSE OUTCOME	K- LEVELS
CO1	Explain the different phases of compiler. Construct NFA and DFA for given	K1, K2,K3
	Regular expression.	
CO2	Apply different parsing algorithms to develop the parsers for a given	
	grammar. Summarize behavior of different parser. List the different types of	K2,K3,K4
	parser suffer from conflict.	
CO3	Apply translation techniques to type checking and intermediate-code	
	generation. Inspect the attributes to find suitable for top-down and bottom-up	K2, K3,K4
	parser.	
CO4	Choose the techniques to generate intermediate-code. Analyze the three	W2 W4
	address code suitable for program construct.	K3,K4
CO5	Evaluate the code optimization techniques and implement a simple code	T/E
	generator.	K5
]	K1-Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluati	ng, K6-Creating

CO-PO MAPPING COURSE ARTICULATION MATRIX

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	3	2	2	1
CO2	2	2	2	3	1	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	3	1
CO5	2	3	3	3	2	1
Total	13	14	14	12	10	5
Average	2.6	2.8	2.8	2.4	2	1

- 1– Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
			•	Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	С	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

Second Semester						
Course Title		OBJECT ORIENTED SYSTEMS DEVELOPMENT				
Course Code		22PBCSC3				
Course No Course Category Core / Elective /		No of Credits	No of hrs /week	Total marks (Internal+External)		
CC-VIII	Core	3	4	25+ 75=100		

COURSE OBJECTIVES

- Introduce the concept of Object-oriented design and understand the fundamentals of OOSD life cycle.
- Familiar with evolution of object-oriented model, classes and it notations
- Practice UML in order to express the design of software projects.
- Specify, analyze and design the use case driven requirements for a particular system.
- Enrich knowledge about DBMS, designing classes and object oriented testing

UNIT – I 12 Hours

Fundamentals of OOSD - Overview of Object Oriented Systems Development: Two orthogonal view of the software – OOSD methodology - Why an Object Orientation. Object basics: Object Oriented Philosophy- Objects – Attributes – Object respond to messages – Encapsulation and information hiding – class hierarchy Polymorphism – Object relationship and associations. OOSD life cycle: Software development process – OOSD Use case Driven Approach – Reusability.

UNIT – II 12 Hours

Methodology, Modeling and UML - Object Oriented Methodologies: Rumbaugh et al.'s object modeling technique - The Booch methodology - The Jacobson et al. methodology - Patterns - Frameworks - The Unified approach. Unified Modeling Language: Static and dynamic models - Why modeling - UML diagrams - UML class diagram - Use case diagram - UML dynamic modeling -packages and model organization.

UNIT – III 12 Hours

Object Oriented Analysis - Object Oriented Analysis process: Business Object Analysis - Use case driven object oriented analysis -Business process modeling - Use-Case model - Developing effective documentation. Classification: Classifications theory - Approaches for identifying classes - Noun phrase approach - Common class patterns approach - Use-Case Driven approach - Classes, Responsibilities, and Collaborators - Naming classes. Identifying object relationships, attributes, and methods: Association - Super- Sub class relationship - Aggregation - Class responsibility - Object responsibility.

UNIT – IV 12 Hours

Object Oriented Design - Object Oriented Design Process and Design Axioms - OOD process- OOD axioms - Corollaries - Design patterns. Designing classes: Designing classes - Class visibility - Refining attributes - Designing methods and protocols - Packages and managing classes. Access layer: Object Store and persistence - DBMS - Logical and physical Database Organization and access control - Distributed Databases and Client Server Computing — Multi database Systems - Designing Access layer classes. View Layer: Designing view layer classes - Macro level process - Micro level process - The purpose of view layer interface - Prototyping the user interface.

UNIT – V 12 Hours

Software Quality - Software Quality Assurance: Quality assurance tests – Testing strategies – Impact of Object Orientation on Testing - Test Cases- Test Plan – Continuous testing. System Usability and Measuring User satisfaction: Usability Testing – User satisfaction test – A tool for analyzing user satisfaction. System Usability and Measuring User satisfaction: Introduction – Usability Testing

TEXT BOOK

1. Ali Bahrami, "Object Oriented Systems Development using UML", McGraw-ill, 2008

REFERENCE BOOKS

- 1. Booch Grady, Rumbaugh James, Jacobson Ivar, "The Unified modeling Language User Guide, Pearson Education, 2006
- 2. Brahma Dathan, Sarnath Ramnath, "Object Oriented Analysis, Design and Implementation", Universities Press, 2010.
- 3. Mahesh P.Matha, "Object-Oriented Analysis and Design Using UML", PHI Learning Private Limited, 2012.
- 4. Rachita Misra, Chhabi Rani Panigrahi, Bijayalaxmi Panda, "Principles of Software Engineering and System Design", Yesdee Publishing 2019.

WEB REFERENCES

- 1. https://www.tutorialspoint.com/object_oriented_analysis_design/index.h tm
- 2. https://www.wisdomjobs.com/e-university/object-oriented-analysis-and- de sign-tutorial-2107.html
- 3. https://sites.google.com/site/atulkg/courses/object-oriented-design-analysis-fall-2010

METHODOLOGY OF TEACHING

Chalk and Talk method, Power point presentation, seminars, flipped learning, quiz, Assignment

Course Outcomes (COs):

Upon completion of this course, the students

CO	COURSE OUTCOME	K- LEVELS
CO1	Define the basics of object orientation, and compare oo with the	K1 K2 K3 K4
	traditional system development, learn the OOSDLC method for	
	developing systems.	
CO2	Learn the different types of methodologies in object orientation	K1 K2 K3 K4
	and Apply the best practices to work with Unified approach and	K5 K5
	UML Modeling and Analyze them to construct different UML	
	diagrams and performance	
CO3	Understand the basics of object oriented analysis process and	K1 K2 K3 K4
	Identify the use cases and actors, Analyze and Classify the	K5 K6
	objects using different approaches, Identify objects and Relate	
CO4	Study the basics of object oriented design process, axioms,	K1 K2 K3
	corollaries and Apply them to Refine Class/Object diagram,	
CO5	Learn the basics of software quality assurance, testing strategies,	K1 K2 K3
K1-Ren	6-Creating	

CO- PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	1	1	3
CO2	3	2	2	2	1	3
CO3	3	3	3	2	1	3
CO4	3	3	3	2	1	3
CO5	3	3	3	2	1	3
Average of CO-PSO	3	2.8	2.6	1.8	1	3
Mapping						
Total of CO-PSO	15	14	13	9	5	15
Mapping						

Level of Correlation between PSO's and CO's

- 1– Low , 2 Medium ,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
				Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	C	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

Second Semester					
Course Title MACHINE LEARNING USING PYTHON - LAB					
Course Code 22PBCSC4					
Course No	Course Category Core / Elective /	No of Credits	No of hrs /week	Total marks (Internal+External)	
CCP IX	Core	3	4	40 + 60=100	

COURSE OBJECTIVES

The students should be able to:

- Understand the implementation procedures for the machine learning algorithms.
- Design Python programs for various Learning algorithms.
- Apply appropriate data sets to the Machine Learning algorithms.
- Identify and apply Machine Learning algorithms to solve real world problems.

LAB EXERCISES

- 1. Simple Programs in Python.
- 2. Demonstrate Scipy library.
- 3. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file
- 4. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.
- 5. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample
- 6. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- 7. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
- 8. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set.
- 9. Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets.
- 10. Write a program to implement k-Nearest Neighbours algorithm to classify the iris data set. Print both correct and wrong predictions.
- 11. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

COURSE OUTCOMES (COs):Upon completion of this course, the students

CO	COURSE OUTCOME	K- LEVELS
CO1	Acquire knowledge on fundamental concepts of machine learning.	K1,K2,K3,K4,K5,K6
	Apply and implement the Candidate-Elimination algorithm and	
	Back propagation algorithm.	
CO2	Read the naïve Bayesian classifier and apply to develop an	K1,K2,K3,K4,K5,K6
	application.	
CO3	Define the working of the decision tree based ID3 algorithm.	K1,K2,K3,K4,K5,K6
	Apply and implement the algorithms.	
	Define k-Nearest Neighbor algorithm to classify the iris data set.	
	Apply and implement the algorithm	
	Define the non-parametric Locally Weighted Regression	
	algorithm. Apply and implement the algorithm	
K1 – Reme	embering, K2 – Understanding, K3 –Applying, K4 –Analysing, K5 –	Evaluating , K6 –
Creating		-

CO- PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	2	2	1
CO2	3	2	2	2	2	1
CO3	3	3	3	2	1	1
Total	9	8	7	6	5	3
Average	3	2.6	2.3	2	1.6	1

- 1– Low,

- 2 Medium , 3 High , 0 No Correlation

Second Semester						
Course Title ADVANCED WEB DESIGN						
Course Code	Course Code 22PBCSD1					
Course	Core category	No. of Credits	No. of Hrs / Week	Total Marks		
number				(Internal+External)		
EDS-I	Core	3	2	25+75		

COURSE OBJECTIVES

- To build web applications using HTML and client side script technologies
- To build web applications with cascading style sheets
- To build web applications with DHTML and XML Data object in order to provide secure web design.

UNIT – I HTML 6 Hours

Structure of an HTML document - Elements of HTML - Working with Lists - Tables and Frames - Working with Hyperlinks - Images and Multimedia - Working with Forms and controls.

UNIT – II CASCADING STYLE SHEET

6 Hours

 $CSS\ Properties - CSS\ Styling:\ Background-Text\ Format-Controlling\ Fonts-Working\ with\ block\ elements\ and\ objects-Working\ with\ Lists\ and\ Tables-CSS\ Id\ and\ Class\ .$ $Box\ Model:\ Introduction-Border\ properties-Padding\ Properties-Margin\ properties\ .$

UNIT – III ADVANCED CSS

6 Hours

Grouping - Dimension - Display - Positioning - Floating - Align - Pseudo class - Navigation Bar - Image Sprites - Attribute sector - Creating page Layout and Site Designs.

UNIT - IV XHTML and DHTML

6 Hours

Client Side Script – Browser Languages – **XHTML**: Forms – Frames – Tables etc. **DHTML**: Cascading Style Sheets – Object Model – Event Model – Filters and Transitions – Data Controls – Handling of Multimedia Data

UNIT – V XML 6 Hours

XML – Introduction – Syntax – Document structure – Document type Definitions – namespaces – XML schemas – Displaying raw XML documents – Displaying XML documents with CSS – XSLT style sheets – XML Processors

TEXT BOOKS

- 1. P I. Bayross, "Web Enable Commercial Application Development Using HTML, DHTML, Java Script, CGI", BPB Publications, 2000.
- 2. T. A. Powell, "Complete Reference HTML", Third Edition, TMH, 2002.
- 3. Patrick Carey, "HTML, XHTML and XML, Course Technology", CENGAGE Learning, 2010.

REFERENCES BOOKS

1. Paul Wilton, "Beginning Java Script", Wiley, India, 2004.

WEB REFERENCES

- 1. http://www.webstyleguide.com/wsg3/index.html
- 2. http://designingfortheweb.co.uk

METHODOLOGY OF TEACHING

• Lectures, Assignments, Group discussions, Seminar, Quiz, Home work

COURSE OUTCOME (COs)

At the end of the Course, the Student will be able to:

CO	COURSE OUTCOME	K- LEVELS
CO1	Apply the knowledge of the HTML concepts in understanding the web	V1 V2 V2
	application development.	K1, K2,K3
CO2	Demonstrate the knowledge of HTML, CSS code and HTML editor to build personal and/or business websites following current professional and/or	K2,K3
	industry standards	112,113
CO3	Understand , analyze and apply the role of markup languages like HTML, DHTML, and XML in the working of the web and web applications.	K2, K3,K4
CO4	Build secure dynamic web application using XML.	K3,K4
CO5	Analyze and assess the more secure web design.	K4, K5
	K1-Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluati	ng, K6-Creating

CO-PO MAPPING COURSE ARTICULATION MATRIX

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	3	2	2	1
CO2	2	2	2	3	1	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	3	1
CO5	2	3	3	3	2	1
Total	13	14	14	12	10	5
Average	2.6	2.8	2.8	2.4	2	1

- 1-Low,
- 2 Medium,
- 3 High , 0 No Correlation

Knowledge Level	Section	Marks	Description	Total Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	С	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

	Second Semester						
Course Title OPTIMIZATION TECHNIQUES							
Course Code 22PBCSE2A							
Course No	Course Category Core / Elective	No of Credits	No of hrs / week	Total Marks (Internal+ External)			
CEC-II	Elective	3	4	25+75=100			

COURSE OBJECTIVES

- To understand the concept of optimization techniques and develop mathematical model of real life cases.
- To study various optimization algorithms. Understand optimization techniques using algorithms, and Investigate, study, develop, organize and promote innovative solutions for various applications.

UNIT – I 13 Hours

Linear Programming Problem (LPP): Formulations and graphical solution of (2 variables) canonical and standard terms of linear programming problem. Simplex method, Two phase simplex method

UNIT – II 12 Hours

Duality in LPP- dual problem to primal- primal to dual problem-duality simplex method-Revised simplex method- revised simplex method versus simplex method

UNIT – III 11 Hours

Transportation Model: North West corner Method, Least cost method, and Vogel's approximation method. Assignment Model: Hungarian assignment model – Travelling sales man problem.

UNIT – IV 12 Hours

Replacement Problem: Introduction – Various replacement situations – Replacement Policy – Variables Maintenance costs and fixed money value – Variable Maintenance Costs and Variable Money Value – Individual Replacement Policy – Group Replacement Policy.

UNIT – V 12 Hours

Project Scheduling PERT/CPM Networks – Fulkerson's Rule – Measure of Activity – PERT Computation – CPM Computation – Resource Scheduling.

TEXT BOOKS

- 1. Kanti Swarup, P.K. Gupta & Man Mohan, "Operation Research", 1996.
- 2. S. Kalavathy, "Operations Research", Second Edition, Vikas Publishing House Pvt.Ltd.,

REFERENCE BOOKS

- 1. John W. Chinneck, "Feasibility and Infeasibility in Optimization-Algorithms and Computational Methods", Springer, 2015.
- 2. Taha, H.A., "Operations Research: An Introduction", Prentice Hall of India (2007) 8th ed

WEB RESOURCES

- 1. https://www.srividyaengg.ac.in/coursematerial/CSE/104745.pdf
- 2. https://nptel.ac.in/courses/111105039

METHODOLOGY OF TEACHING

Class Lecturers, Assignments, Group Discussion, Quiz, Seminar

COURSE OUTCOMES (Cos)

Upon completion of this course, the students are able to

CO	COURSE OUTCOME	K- LEVELS			
CO1	Define the terms of OR, Solve the optimization problem using	K1, K3, K4			
	graphical method, Interference the results	, ,			
CO2	What is duality? Solve the optimization problem using dual	K1, K3, K5			
	simplex method, Compare and contrast the revised simplex				
	method with simplex method.				
CO3	Illustrate the transportation problem, Solve the transportation	K2, K3			
	problem using various methods. Solve the assignment problem				
CO4	Define the replacement problem, Explain the various	K1, K2, K5			
	replacement situations, Study about maintenance cost, Compare				
	the Individual Replacement Policy with Group Replacement				
	Policy				
CO5	Relate the real time project scheduling problem with	K1,K2, K5			
	mathematical problems, Summarize the steps of PERT and				
	CPM computation, Choose the best method among PERT and				
	CPM				
K1 – Re	K1 – Remembering, K2– Understanding, K3 – Applying, K4 – Analysing, K5–Evaluating,				
K6-Cre	ating				

CO-PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	3	0	2	2	3
CO2	3	3	0	2	2	3
CO3	3	3	1	2	2	3
CO4	3	3	1	2	2	3
CO5	3	3	1	2	3	3
Total	14	15	3	10	11	15
Average	2.8	3	0.6	2	2.2	3

- 1- Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	С	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

Second Semester					
Course Title Scientific Computing					
Course Code 22PBCSE2B					
Course	Core category	No. of Credits	No. of Hrs /	Total Marks	
number			Week	(Internal +External)	
CEC-II	Core	3	4	25+75	

COURSE OBJECTIVES

- To understand the concept of Scientific computing
- To acquaint with basic concepts of numerical methods
- To study the numerical differentiation and integration methods.

UNIT – I 12 Hours

Root finding for nonlinear equations: Bisection methods – Fixed point Iteration method – Newton Raphson method – Graffe's squaring method – Secant method

UNIT - II 12 Hours

Solution of Simultaneous linear equations: Gauss Elimination – Gauss Seidel method – Gauss Jacobi iterative methods- Matrix Inversion method: Gauss Jordan methods

UNIT- III 12 Hours

Interpolation methods: Newton's divided difference interpolating polynomials – Lagrange's polynomial – Newton forward and backward difference formula – Numerical differentiation: Strling's and Bessel's Central difference formula – Numerical differentiation using Newton's forward and backward interpolation formula

UNIT – IV 12 Hours

Numerical integration: Numerical integration by Trapezoidal rule, Simpon's 1/3 and 3/8 rules – Double integral using Trapezoidal and Simpson rules.

UNIT – V 12 Hours

Initial value problems for ordinary differential equation: Taylor series method for simultaneous first order and second order differential equations— Modified Euler's method—Runge-Kutta method for simultaneous differential equations—RK second order and fourth order methods.

TEXT BOOKS

- 1. Steven C. Chapra and Raymond P. Camale, "Numerical Methods for Engineering", 5th Edition, Tata McGraw Hill, 2008.
- 2. S.S.Sastry, "Introdcutory Methods of Numerical Analysis", 4th Edition, Prentice-Hall of India, 2008

REFERENCE BOOKS

- 1. M.K.Jain, S.R.K. Iyengar and R.K.Jain, "Numerical Methods for Scientific and Engineering Computation", 5th Edition, New Age International (P) Ltd., 2007.
- 2. S. Arumugam, A. Thangapandi Issac and A. Somasundaram, "Numerical Methods", 2nd Edition, Scitech Publications Pvt. Ltd., 2008
- 3. V.Rajaram, "Computer Oriented Numerical Methods", 3rd Edition, PHI, 2005.

WEB REFERENCES

- 1. NPTEL & MOOC courses titled Numerical methods
- 2. https://onlinecourses.nptel.ac.in/noc21_ma45/
- 3. https://math.iitm.ac.in/public_html/sryedida/caimna/content1.html

COURSE OUTCOMES (Cos)

On completion of the course the students will be able to:

CO	COURSE OUTCOME	K- LEVELS		
CO1	Learn numerical techniques to compute the roots of non linear equations	K1, K2, K3		
CO ₂	Learn numerical techniques to solve system of simultaneous linear	K1, K2, K3		
	equations			
CO ₃	Gain knowledge about Difference operators and to learn how to	K1, K2, K3		
	interpolate given set of values			
CO4	CO4 Calculate the definite value of integral using different methods			
CO5	Solve ordinary and partial differential equations	K1, K2, K3		
K1-Re	emembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluati	ng, K6-Creating		

CO-PO MAPPING COURSE ARTICULATION MATRIX

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	1	1	1
CO2	3	3	2	1	1	1
CO3	3	3	2	1	1	1
CO4	3	3	2	1	1	1
CO5	3	2	2	1	1	1
Total	15	14	10	5	5	5
Average	3	2.8	2	1	1	1

- 1– Low,
- 2 Medium,
- 3 High , 0 No Correlation

Knowledge Level	Section	Marks	Description	Total Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	С	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

	Second Semester				
Course Title BIG DATA ANALYTICS					
Course Code	Course Code 22PBCSE2C				
Course No	Course Category	No of Credits	No of hrs /week	Total marks	
Course No	Core / Elective /	No of Credits No of firs /week (Internal+Exter			
CEC-II	Elective	3	4	25 + 75=100	

COURSE OBJECTIVES:

- To explore the fundamental concepts of big data analytics
- To learn to analyze the big data using intelligent techniques.
- To learn to use various techniques for mining data stream.
- To understand the applications using Map Reduce Concepts

UNIT – I: Basics of Big Data Analytics

12 Hours

Classification of Digital Data – Introduction to Big Data: Characteristics, Evolution, Definition, Challenges – What is Big Data? – 5 V's of Big Data – Big Data Analytics: Definition, importance of Big Data Analytics, Classification, challenges – Data Science and Data Scientists – Terminologies in Big Data Environments: In-Memory Analytics, In-Database Processing, SMP, MPP, Shared Nothing Architecture, CAP Theorem.

UNIT - II: Hadoop Architecture

12 Hours

Hadoop: Features, Advantages, Versions – Overview of Hadoop Ecosystem – Hadoop distributions – Why to use Hadoop? – RDBMS vs. Hadoop – Hadoop overview - HDFS (Hadoop Distributed File System) – Hadoop Map Reduce data processing – Managing applications and resources with YARN (Yet Another Resource Negotiator) – Map Reduce programs for Word Count, Market Analysis and Weather data Analysis – Streaming using Map Reduce.

UNIT – III: Hive 12 Hours

Hive: Introduction to Hive – Hive architecture – Data Types – File formats – Hive Query Language (HQL): DDL, DML Statements, Database commands, Managed and External Tables, Data loading into tables, Querying tables, Partitions: Static and Dynamic partition, Bucketing – Views, Sub queries and Joins - Aggregation – RCFILE implementation – SERDE (Serializer / Deserializer) – UDF (User Defined Functions).

UNIT – IV: Pig 12 Hours

Pig: Introduction to Pig – Pig Architecture – Pig Latin overview: Operators – Data Types – Pig Execution Modes – Relational Operators – Eval Functions – Tuple and Map data types – User Defined Functions – Parameter substitution – Word Count example using Pig – Comparison of Pig and Hive. Introduction to Jasper Reports.

UNIT – V: NoSOL 12 Hours

NoSQL: Uses of NoSQL – Types of NoSQL Databases – Advantages – New SQL - SQL vs. NoSQL vs. New SQL. MongoDB: Introduction – Necessity of MongoDB- RDBMS vs. MongoDB terminologies – Data Types. MongoDB Query Language: Insert, save, Update and Remove – Count, Limit, Sort and Skip – Arrays – Aggregate Functions – Map Reduce Function.

TEXT BOOK

1. Seema Acharya, "Big Data and Analytics", Second Edition, , Wiley India Private Limited.

REFERENCE BOOKS

- 1. Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- 2. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.
- 3. Eric Sammer, "Hadoop Operations", O'Reilley, 2012.

4. AlanGates,"ProgrammigPig",O'Reilley,2011. Hadoop in Practice by Alex Holmes, MANNING Publ

WEB REFERENCES:

- 1. Hadoop: http://hadoop.apache.org/.
- 2. Hive: https://cwiki.apache.org/confluence/display/Hive//LanguageManual.
- 3. Pig: https://pig.apache.org/docs/r0.17.0/

METHODOLOGY OF TEACHING

Class lectures, Group Discussion, Assignments, Quiz.

Course Outcomes (COs):

Upon completion of this course, the students

CO	COURSE OUTCOME	K- LEVELS
CO1	Finds the reason about the evolution of data science and its development. Explain the basic of big data analytics and to develop the code. Importance of various kinds of data comparing the other language.	K1, K2, K3
CO2	Outline and model HDFS environment using NoSQL implementing the queries. Aggregate the data using NoSQL.	K2, K3
CO3	Identify the concept of basic Hadoop, data format and analyzing the data in the HDFS environment. Test for the concept Hadoop mapper and reducer implementations and java/python interfaces. Significance of various methods of streaming, serialization.	K3, K4
CO4	Analyze Map Reduce applications, unit test, MR Unit, create file using Map Reduce sorting and shuffling process. Determine the creation of input and output format of Map Reduce.	K4, K5
CO5	Judge the usage of related tools and Definition of MongoDB, Pig, Hive QL. Life Build data manipulation by Hive QL queries.	K5
K1 – Reme Creating	embering , $K2-$ Understanding , $K3-$ Applying , $K4-$ Analysing , $K5-$ Evaluation	ating, K6 -

CO- PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	3	2	2	1
CO2	2	2	2	3	1	1
CO3	3	3	3	2	2	-
CO4	3	3	3	2	3	2
CO5	1	2	3	3	2	1
Total	12	13	14	12	10	5
Average	2.4	2.6	2.8	2.4	2	1

- 1-Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	С	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

Second Semester					
Course Code 22PBCSE3A					
Name of the Course WIRELESS NETWORKS					
Course No	Course No Course No of Credits No of hrs / week Total Marks				
	Category Core /			(Internal +	
	Elective			External)	
CEC- III	Elective	3	4	25+75 = 100	

COURSE OBJECTIVES:

- To Study about Wireless Networks, Protocol Stack and Standards.
- To Study about Fundamentals of 3G Services, Its Protocols and Applications.
- To Study about Evolution of 4G Networks, its Architecture and Applications.

UNIT – I 12 Hours

WIRELESS LAN - Introduction-WLAN Technologies: Advantages and Disadvantages - Infrared, Spread Spectrum -IEEE802.11: System Architecture – Hiper LAN: HiperLAN2 – Bluetooth: Architecture, Radio Layer, IEEE802.16-WIMAX: Physical Layer, MAC, Spectrum Allocation For WIMAX

UNIT – II 11 Hours

MOBILE NETWORK LAYER - Introduction – Mobile IP: IP Packet Delivery, Agent Discovery, Tunneling and Encapsulation, IPV6-Network Layer in the Internet- Mobile Ad-Hoc Network: Routing, Destination Sequence Distance Vector, Dynamic Source Routing.

UNIT – III 13 Hours

MOBILE TRANSPORT LAYER - TCP Enhancements For Wireless Protocols – Traditional TCP: Congestion Control, Fast Retransmit/Fast Recovery, Implications of Mobility – Classical TCP Improvements: Indirect TCP, Snooping TCP, Mobile TCP – TCP Over 3G Wireless Networks.

UNIT IV 12 Hours

WIRELESS WIDE AREA NETWORK - Overview Of UTMS Terrestrial Radio Access Network-UMTS Core Network Architecture: 3G-MSC, 3G-SGSN, 3G-GGSN, SMS-GMSC/SMS-IWMSC, Firewall, DNS/DHCP-High Speed Downlink Packet Access (HSDPA)-LTE Network architecture and Protocol.

UNIT V 12 Hours

4G NETWORKS - Introduction – 4G Vision – 4G Features and challenges – Applications of 4G – 4G Technologies: Multicarrier Modulation, Smart Antenna Techniques, OFDM-MIMO Systems, Adaptive Modulation and Coding with time Slot Scheduler, Cognitive Radio.

TEXT BOOKS

- 1. Jochen Schiller, "Mobile Communications", Second Edition, Pearson Education 2012.(Unit I,II,III)
- 2. Vijay Garg, "Wireless Communications And Networking", First Edition, Elsevier 2014.(Unit IV,V)

REFERENCE BOOKS

- 1. Erik Dahlman, Stefan Parkvall, Johan Skold And Per Beming, "3G Evolution HSPA And LTE For Mobile Broadband", Second Edition, Academic Press, 2008.
- 2. Anurag Kumar, D.Manjunath, Joy Kuri, "Wireless Networking", First Edition, Elsevier 2011.
- 3. Simon Haykin, Michael Moher, David Koilpillai, "Modern Wireless Communications", First Edition, Pearson Education 2013.

WEB RESOURCES

- 1. https://nptel.ac.in/courses/117102062
- 2. https://nptel.ac.in/courses/106105160

METHODOLOGY OF TEACHING

Class Lecturers, Assignments, Group Discussion, Quiz, Seminar

Course Outcomes (Co)

Upon completion of this course, the students are able to

CO	COURSE OUTCOME	K- LEVELS
CO1	Explain about wireless LAN, Bluetooth and Hyper LAN,	K2, K4, K5
	Examine the IEEE 802.xx family architecture, Study the	
	importance of WiMAX	
CO2	Define the various terms of Mobile IP, interpret the packet	K1, K2, K3,
	delivery on Mobile IP, List and Choose the best routing algorithm	K4
	for Mobile environment,	
CO3	Summarize the TCP Enhancements for Wireless Protocols,	K2, K4, K5
	Analyze the Classical TCP Improvements, compare TCP with	
	other 3G networks	
CO4	What is UTMS? Outline the latest LTE architecture, Study the	K1, K2, K6
	improvements on UMTS Core Network Architecture	
CO5	Define the 4G technology, and explain the various 4G	K1,K2, K6
	Technologies, Design and develop Wireless Network	
	Environment for any application using latest Wireless Protocols	
	and Standards	
K1 – Reme	embering, K2- Understanding, K3-Applying, K4-Analysing, K5-	Evaluating ,
K6-Creating	ng	_

CO-PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	2	2	3
CO2	3	3	2	2	2	3
CO3	3	3	2	2	3	3
CO4	3	3	3	2	3	3
CO5	3	3	3	2	3	3
Total	15	15	12	10	13	15
Average	3	3	2.4	2	2.6	3

- 1- Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
				Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	C	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

Second Semester					
Course Title BLOCK CHAIN TECHNOLOGY					
Course Code		22PBCSE3B			
Course No	Course Category	No of Credits	No of hrs / week		
	Core / Elective			(Internal+	
				External)	
CEC-III	Elective	3	4	25+75 = 100	

COURSE OBJECTIVES

- N To understand the concepts of block chain technology
- N To understand how Blockchain and Bitcoin works and its applications in Government.

UNIT - I 12 Hours

Introduction to Blockchain: Back story of Blockchain - What is Blockchain? - Centralized vs. Decentralized Systems - Layers of Blockchain - Why is Blockchain Important? Limitations of Centralized Systems - Blockchain Uses and Use Cases

UNIT - II 14 Hours

How Blockchain Works: Blockchain Foundation - Cryptography - Symmetric Key Cryptography - Cryptographic Hash Functions - MAC and HMAC - Asymmetric Key Cryptography - Diffie-Hellman Key Exchange - Symmetric vs. Asymmetric Key Cryptography - Game Theory - Why to Study Game Theory - The Blockchain - Merkle Trees - Properties of Blockchain Solutions Blockchain Transactions - Distributed Consensus Mechanisms - Blockchain Applications - Scaling Blockchain - Off-Chain Computation - Sharding Blockchain State

UNIT - III 12 Hours

How Bitcoin Works - The History of Money - Dawn of Bitcoin - What Is Bitcoin? - Working with Bitcoins - The Bitcoin Blockchain - Block Structure - The Genesis Block

UNIT - IV 11 Hours

The Bitcoin Network - Network Discovery for a New Node - Bitcoin Transactions - Consensus and Block Mining - Block Propagation - Bitcoin Scripts - Bitcoin Transactions Revisited - Scripts - Full Nodes vs. SPVs - Bitcoin Wallets

UNIT - V 11 Hours

Block chain for Government: Digital identity, land records and other kinds of record keeping between government entities, public distribution system / social welfare systems.

TEXT BOOK

1. Bikramaditya Singhal, Gautam Dhameja, Priyansu Sekhar Panda, "Beginning Blockchain: A Beginner's Guide to Building Blockchain Solutions" - Apress - 2018.

REFERENCE BOOKS

- 1. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Crypto currencies", O'Reilly Media, Inc. 2014.
- 2. Melanie Swa, "Block chain", O'Reilly Media 2014.
- 3. ArshdeepBahga, Vijay Madisetti, "Block chain Applications: A Hands-On Approach", White Falcon Publishing Solutions, 2019

WEB RESOURCES

- 1. https://nptel.ac.in/courses/106105184/
- 2. https://consensys.net/blockchain-use-cases/government-and-the-public-sector/
- 3. https://www.ibm.com/blockchain/industries/government

METHODOLOGY OF TEACHING

Class Lecturers, Assignments, Group Discussion, Quiz, Seminar

Course Outcomes (Cos)

Upon completion of this course, the students are able to

CO	COURSE OUTCOME	K- LEVELS
CO1	Define the basis of Blockchain, Compare and contrast the	K1, K4
	centralized and decentralized system	
CO2	Knows how Blockchain works, examine and analyze the	K1, K4,
	various cryptography techniques,	
CO3	Define the Bitcoin terms, design the structure of the genesis	K1, K6
	block	
CO4	Discover a new node in a network, explain the Bitcoin	K1,K4, K5,
	transactions, Compare Full Nodes vs. SPVs	
CO5	Illustrate how Blockchain helps for Government,	K2
K1 – Ren	nembering, K2- Understanding, K3-Applying, K4-Analysing, 1	K5–Evaluating,
K6-Creat		

CO-PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	3	3	2	3
CO2	3	3	3	3	2	3
CO3	3	3	3	3	3	3
CO4	3	3	3	3	3	3
CO5	3	3	3	2	3	3
Total	15	15	15	14	13	15
Average	3	3	3	2.8	2.6	3

- 1-Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	С	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

	Second Semester					
Course Title ADVANCED DATABASE MANAGEMENT SYSTEM						
Course code 22PBCSE3C						
Course No	Course Category Core / Elective /	No of Credits	No of hrs /week	Total marks (Internal+External)		
CEC-III	Elective	3	4	25 + 75=100		

COURSE OBJECTIVES:

- To introduce students to the basic concepts and techniques of Machine Learning.
- To have a thorough understanding of the Supervised and Unsupervised learning techniques
- To study the various probability based learning techniques
- To understand graphical models of machine learning algorithms

UNIT I 12 Hours

Relational and parallel Database Design: Basics, Entity Types, Relationship Types, ER Model, ER-to-Relational Mapping algorithm. Normalization: Functional Dependency, 1NF, 2NF, 3NF, BCNF and 4NF.

UNIT II 12 Hours

Parellel Database : I/O Parallelism, Inter query Parallelism, Intra query Parallelism, Intra operation Parallelism, Interoperation Parallelism, Query Optimization.

Distributed Database: Architecture, Distributed data storage, Distributed transactions, Commit protocols, Concurrency control, Distributed Query Processing.

UNIT III 12 Hours

Spatial Database: Spatial Database Types, Spatial Data Model, Spatial Database Queries, Spatial data indexing.

Logic based databases: Complex Data Types, Structured Types and Inheritance, Table Inheritance, array and Multiset, Object Identity and Reference Types, Object Oriented versus Object Relational.

UNIT IV 12 Hours

XML Databases: XML Hierarchical data model, XML Documents, DTD, XML Schema, XML Querying, XHTML, Illustrative Experiments.

UNIT V 12 Hours

Temporal Databases: Introduction, Intervals, Packing and Unpacking Relations, Generalizing the relational Operators, Database Design, Integrity Constraints, Multimedia Databases: Multimedia Database Applications

TEXT BOOKS

- 1. Abraham Silberschatz, Henry F Korth, S Sudarshan, "Database System Comcepts", 6th edition, McGraw-Hill International Edition, 2011
- 2. C.J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems", 8th Edition, Pearson Education Reprint 2016.

REFERENCE BOOKS

- 1. Ramez Elmasri, Shamkant B Navathe, "Fundamental of Database Systems", Pearson, 7th edition 2016.
- 2. Thomas Connolly, Carolyn Begg., "Database Systems a practical approach to Design, Implementation and Management", Pearson Education, 2014.

WEB RESOURCES

- 1. https://nptel.ac.in/courses/106/106/106106093/
- 2. https://www.javatpoint.com/dbms-tutorial
- 3. https://www.tutorialspoint.com/dbms/index.html

METHODOLOGY OF TEACHING

Chalk and Talk method, Power point presentation, seminars, quiz, Assignment

COURSE OUTCOMES (COs):

Upon completion of this course, the students

open	completion of this course, the students	
CO	COURSE OUTCOME	K- LEVELS
CO1	Gain Knowledge on the basics of Entity type, relation types,	K1,K2,K3,K4
	ER model . Learn and compare and learn different Normal	
	Forms,.	
CO2	Acquaint knowledge on Architecture, parallelism, inter query, intra query parallelism and Distributed data storage, Distributed transactions, protocols, Query processing, object oriented Vs object relational.	K1,K2,K3,K4,K6
CO3	Acquire knowledge on Characteristics, Techniques, query in spatial database and logical based database	K1,K2,K3,K4,K5
CO4	Learn about XML Database, XML Documents, XML Schema for illustrate Experiments.	K1,K2,K3,K4
CO5	Understand and learn the role of Temporal Database And	K1,K2,K3,K4,K6
	Multimedia Database.	, , , ,
K1 – Reme	embering, K2 – Understanding, K3 –Applying, K4 –Analysing, K5 –	Evaluating, K6 –
Creating		

CO- PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	2	2	3
CO2	3	2	3	2	1	2
CO3	3	3	2	2	2	3
CO4	3	3	3	1	1	3
CO5	3	2	2	1	2	2
Total	15	13	12	8	8	13
Average	3	2.6	2.4	1.6	1.6	2.6

- 1-Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	С	3 x10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

Second Semester					
Course Title			INTERNSHIP		
Course Code		22PCINT1			
Course No	Course Category Core / Elective /	No of Credits	No of hrs /week	Total marks (Internal+External)	
-	Internship	2	-	-	

COURSE OBJECTIVES:

Internship is on-the-job training offered by a company/firm to the students to work at a firm for a limited period of time (**during summer vacation of I year**) as part of degree course.

To receive a satisfactory grade (S) for an internship course, a student must submit a report that satisfies the following criteria:

The report must be of professional quality, typed, and at least eight full, single-spaced pages in length. Title pages, employer letters, and bibliography pages will not be counted toward the page requirements. The report must contain, suggestions for content include general discussion of projects technical specifications of projects, what the intern learned, mistakes the intern made, activities the company provided for interns, and interactions with other employees and supervisors.

The report should accurately reflect the student's activity with the firm and contains no proprietary information or breach of confidentiality concerning the firm's products, procedures, etc. The report will not be accepted unless it is accompanied by the employer's letter. The letter should be bound into the report in a report folder, and the folder should be submitted.

SEMESTER-III

Third Semester						
Course Title		DIGITAL IMAG	DIGITAL IMAGE PROCESSING			
Course code		22PCCSC1	22PCCSC1			
Prerequisite		Calculus, Basic Programming Skill				
Course	Core category	No. of Credits	No. of Credits No. of Hrs / Week Total Marks			
number		(Internal+External)				
CC – X	Core	4	5	25+75		

COURSE OBJECTIVES

- To become familiar with digital image fundamentals
- To get exposed to simple image enhancement techniques in Spatial and Frequency domain.
- To learn concepts of degradation function and restoration techniques.
- To study the image segmentation and representation techniques.
- To become familiar with image compression and recognition methods.

UNIT – I 15 Hours

Digital image fundamentals: Steps in Digital Image Processing – Components – Elements of Visual Perception – Image Sensing and Acquisition – Image Sampling and Quantization – Relationships between pixels - Color image fundamentals - RGB, HSI models

UNIT – II 15 Hours

Spatial Domain: The basics of intensity transformations and spatial – Basic intensity transformation functions – Histogram processing – Fundamentals of Spatial Filtering– Smoothing and Sharpening Spatial Filtering. **Frequency Domain**: Introduction to Fourier Transform– Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters, Homomorphic filtering.

UNIT – III 15 Hours

Image Restoration: degradation model, Properties, Noise models – Mean Filters – Order Statistics – Adaptive filters – Notch Filters – Optimum Notch Filtering – Inverse Filtering – Wiener filtering.

UNIT – IV 15 Hours

Color Image Processing: Color Fundamentals, Color Models, Pseudo color image processing.

Edge Detection: Edge detection, Edge linking via Hough transform – Thresholding - Region based Segmentation – Region growing – Region splitting and merging.

UNIT – V 15 Hours

Image Compression: Fundamentals, Image Compression Models, Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding. **Image Compression standards**: JPEG standard, MPEG. **Recognition**: Patterns and pattern classes.

TEXT BOOK

1. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing', Pearson, Fourth Edition, 2018.

REFERENCE BOOKS

- 1. Anil K. Jain, Fundamentals of Digital Image Processing', Pearson, 2002.
- 2. Rafael C. Gonzalez, Richard E. Woods, Steven Eddins, Digital Image Processing using MATLAB', Pearson Education, Inc., 2011.
- 3. Kenneth R. Castleman, Digital Image Processing', Pearson, 2006.

WEB REFERENCES

https://www.digimat.in/nptel/courses/video/117105135/L01.html

METHODOLOGY OF TEACHING

• Lectures, Assignments, Group discussions, Seminar, Quiz, Home work

COURSE OUTCOME (COs)

At the end of the Course, the Student will be able to:

CO	COURSE OUTCOME	K- LEVELS
CO1	Understand and apply the basics and fundamentals of digital image	K1, K2,K3
	processing, such as digitization, sampling and quantization.	K1, K2,K3
CO2	Apply the techniques of smoothing, sharpening and enhancement on images.	K2,K3,K4
	Show the difference between Spatial and Frequency filtering.	N2,N3,N4
CO3	Understand the restoration concepts and filtering techniques. Classify the	K2, K3,K4
	noise model and identify the type of noise occurred in an image.	N2, N3,N4
CO4	Analyze and apply color image processing techniques. Make use of the	W2 W4
	basics of segmentation	K3,K4
CO5	Justify the compression techniques to reduce the size of memory needed by	K5
	an image.	W
	K1-Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluati	ng, K6-Creating

CO-PO MAPPING COURSE ARTICULATION MATRIX

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	3	2	2	1
CO2	2	2	2	3	1	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	3	1
CO5	2	3	3	3	2	1
Total	13	14	14	12	10	5
Average	2.6	2.8	2.8	2.4	2	1

- 1- Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	С	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

Third Semester					
Course Title	Course Title 22PCCSC2				
Course Code	Course Code INTERNET OF THINGS				
Course No	Course Category	No of Credits	Total marks		
Course 110	Core / Elective /	110 of Cicuits	No of hrs /week	(Internal+External)	
CC-XI	Core	4	5	25 + 75=100	

COURSE OBJECTIVES

- To understand the fundamentals of Internet of Things
- To learn about the basics of IOT protocols.
- To build low-cost embedded system using Arduino/RaspberryPi.
- To apply the concept of Internet of Things in the real-world scenario.

UNIT – I: Introduction to IoT

15 Hours

Introduction to IoT – Characteristics of IoT - Physical Design of IoT: Things in IoT, IoT Protools. - Logical Design of IoT: Functional Blocks, Communication Models, Communication APIs. - IoT Enabling Technologies: WSN, Cloud Computing, Big Data Analytics, Communication Protocols, Embedded Systems. - IoT Levels & Deployment Templates.

UNIT - II: IoT and Machine to Machine

15 Hours

IoT and M2M: M2M, Difference between IoT and M2M. - SDN and NFV for IoT - IoT system management: Need for IoT system management, SNMP, Network operator requirements, NETCONF, YANG, IoT System Management with NETCONF and YANG.

UNIT – III: IoT Physical Devices

15 Hours

IoT Platforms Design Methodology: Ten steps in IoT design methodology- IoT Physical Devices & Endpoints: Basic building blocks of IoT devices – Arduino Uno: Arduino pins – IDE - Sketch Functions (digital Read(), digital Write(),

Pin Mode(), analog Read(), analog Write(), delay(), delay Microseconds() – Sketch Constants and Variables – Important Sketch Structures (loop(), setup()) – Raspberry Pi 4: Pins and Components – Interfaces – Python Library for Raspberry Pi interfacing.

UNIT – IV: Analog Sensors and Digital Sensors interfacing

15 Hours

Interfacing Analog and Digital Sensors with Arduino/Raspberry Pi: Interfacing LED and Potentiometer – Controlling high-voltage appliances with Relay module – Interfacing Servo Motor – Interfacing PIR Motion Sensor HC-SR501 – Interfacing Ultrasonic Sensor HC-SR04 – Interfacing DHT22 Temperature and Humidity Sensor – Interfacing Soil Moisture Sensor – Interfacing Flame Sensor – Interfacing MQ2 Gas Sensor – Interfacing LDR –HC-06 Bluetooth module – ESP8266 Wi-Fi module - Liquid Crystal Display. (Note: Interfacing with either Arduino or Raspberry Pi).

UNIT - V: Case Studies

15 Hours

Case Studies and Real-World Applications: Real-World design constraints—Applications: Smart Home – Smart Cities – Smart Environment - Smart Grids – Logistics Applications - Agriculture.

TEXT BOOK

1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A Hands-on Approach", Universities Press, 2015.

REFERENCE BOOKS

- 1. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the Internet of Things", Springer, 2011.
- 2. Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", CRC Press, 2012.
- 3. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Key applications and Protocols", Wiley, 2012
- 4. AmmarRayes, SamereSalam, "Internet of Things From Hype to Reality", First Edition, Springer Publishers, 2017.
- 5. Raj Kamal, "Internet of Things Architecture and Design Principles", First Edition, McGraw Hill Education, 2017.
- 6. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand, David Boyle, "From Machine-to-Machine to the Internet of Things Introduction to a New Age of Intelligence", Elsevier, 2014.
- 7. Agus Kurniawan, "Smart Internet of Things Projects", First Edition, Packt Publishing Ltd., 2016.

WEB REFERENCES

- 1. https://www.geeksforgeeks.org/introduction-to-internet-of-things-iot-set-1/
- 2. https://www.arduino.cc/reference/en/
- 3. https://www.raspberrypi.com/documentation/

METHODOLOGY OF TEACHING

Class lectures, Demonstrations, Group Discussion, Assignments, Quiz.

COURSE OUTCOMES (COs)

Upon completion of this course, the students

1	1	
CO	COURSE OUTCOME	K- LEVELS
CO1	Show the vision of IoT from a global context.	K1
CO2	Explain the fundamentals of IoT and M2M.	K2
CO3	Classify the role of big data, cloud computing and data analytics in a typical IoT system and experiment with the same.	K2, K3
CO4	Identify the market perspective of IoT.	К3
CO5	Analyze the application of IoT in Industry, Home, Grids and Buildings.	K4
K1 – Reme	embering , K2 – Understanding , K3 – Applying , K4 – Analysing , K5 – Evaluati	ng, K6 –
Creating		

CO- PO Mapping (Course Articulation Matrix)

CO / PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	3	2	2	1
CO2	2	2	2	3	3	1
CO3	3	3	3	2	2	-
CO4	3	3	3	2	3	2
CO5	2	1	3	3	2	1
Total	13	12	14	12	12	5
Average	2.6	2.4	2.8	2.4	2.4	1

Level of Correlation between PSO's and CO's

- 1- Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	С	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

Third Semester					
Course Title	Course Title SOFTWARE PROJECT MANAGEMENT				
Course Code		22PCCSC3			
Course No	Course Category Core / Elective /	No of Credits	No of hrs /week	Total marks (Internal+External)	
CC - XII	Core	3	4	25+ 75=100	

COURSE OBJECTIVES

- Understand the framework of project management
- Learn to monitor and control the project
- Know the sound knowledge in Agile method
- Know the team, cost, quality and resource management
- Identify and control the risk in the projects

UNIT – I 12 Hours

Project Management Framework: Introduction: Project — Project management — Relationship among Project, Program and Portfolio management — Project and operations management—Role of project manager — Project management body of knowledge — Enterprise Environmental factors. Project life cycle and Organization: Overview of project life cycle — Projects vs Operational Work — Stakeholders — Organizational influences on project management. The Standard for Project Management of a Project: Project management processes for a project: Common project management process interactions — Projects management process groups — Initiating process group planning process group — Executing process group — Monitoring and controlling process group — Closing process group.

UNIT – II 12 Hours

Choosing Methodologies and Technologies – Software Processes and Process Models – Choice of Process Models – The Waterfall Model – Prototyping – other ways of categorizing prototype - **Agile Methods** – Extreme Programming Selecting the Most Appropriate Process Model – Need of Agile – Iterative vs Incremental-Agile Manifesto and Mindset – Lean, Scrum and Kanban methods-uncertainty, Risk, and lifecycle selection-Scrum Elements overview-5 levels of planning – Scrum Process overview-Agile Team-roles and responsibilities – Epic- feature – User Stories-PBI-The Sprint.

UNIT – III 12 Hours

The Project Management Knowledge Areas: Project integration management: Develop project charter – Develop project management plan – Direct and manage project execution – Monitor and control project work – Perform integrated change control – Close project or phase. Project scope management: Collect requirements – Define Scope – Create WBS – Verify Scope – Control Scope. Project team management: Define activities – Sequence activities – Estimate activity resources – Estimate Activity Durations – Develop Schedule – Control Schedule.

UNIT – IV 12 Hours

Project cost management: Estimate costs – Determine budget – Control costs. Project Quality Management: Plan quality - perform quality assurance – Perform quality control. Project Human Resource Management: Develop human resource plan – Acquire project team – Develop project team – Manage project team. Project Communications Management: Identify stakeholders – Plan communications - Distribute information – Manage stakeholder expectations – report performance.

UNIT – V 12 Hours

Project Risk Management: Plan risk management - Identify risks - Perform qualitative risk analysis - Perform quantitative risk analysis - plan risk responses - Monitor and control risks. Project Procurement Management: Plan - Conduct - Administer - Close procurements.

TEXT BOOKS

- 1. "A guide to the Project management Body of Knowledge (PMBOK Guide)" Fouth Edition, Project Management Institute, Pennsylva-nia, 2008
- 2. BOB Huges, Mike Cotterell, Rajib Mall "Software Project Manage- ment", McGraw Hill, FifthEdition, 2011.
- 3. Emerson, "Agile Handbook," Philosophie

REFERENCE BOOKS

- 1. Futrell, "Quality Software Project Management", Pearson Education India.
- 2. Royce, "Software Project Management", Pearson Education India.
- 3. C.Ravindranath Pandian, "Applied Software Risk Management-A Guide for Software Project Managers", Auerbach Publications, 2015.
- 4. Benjamin A. Lieberman, "The Art of Software Modeling", Auer-bach Publications, 2010.

WEB REFERENCES

- 1. https://www.tutorialspoint.com/software_engineering/software_projectmanagement.h tm
- 2. https://onlinecourses.nptel.ac.in/noc19_cs70/preview
- 3. https://www.javatpoint.com/software-project-management

COURSE OUTCOMES (COs)

Upon completion of this course, the students

CO	COURSE OUTCOME	K- LEVELS
CO1	Gain Knowledge on the basics of project management	K1, K2, K3
	framework. Learn project management of a project. Apply the	
	basic knowledge of project basics.	
CO2	Acquaint knowledge on methodologies and technologies to	K1, K2, K3, K4
	know sound knowledge in agile methods.	
CO ₃	Acquire knowledge on to monitor and control the project work.	K1, K2, K3, K4, K5,
	To understand and know the project team management.	K6,
CO4	To understand and know the team cost, quality and	K1, K2, K3, K4, K5
	resource management. Apply and analyze Project cost	
	management.	
CO5	Analyze and understand identify and control the risk in the	K1, K2, K3, K4, K5,
	projects.	K6
K1 – F	Remembering , $K2$ – Understanding , $K3$ –Applying , $K4$ –Analysing , $K5$ –Eva	luating, K6 –Creating

CO- PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	1	1	3
CO2	3	2	2	2	1	3
CO3	3	3	3	2	1	3
CO4	3	3	3	2	1	3
CO5	3	3	3	2	1	3
Total	15	14	13	9	5	15
Average	3	2.8	2.6	1.8	1	3

- 1-Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total Marks
		10.0		
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	С	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)		<i>C</i> ,	
	75			

Third Semester							
Course Title STATISTICS FOR DATASCIENCE							
Course Code	Course Code 22PCCSC4						
Course No	Course Category Core / Elective	No of Credits	No of hrs / week	(Internal +			
External)							
CC-XIII	Core	3	4	25+75=100			

COURSE OBJECTIVES

- To provide an understanding of the statistical methods and probabilistic concepts by which real-life problems are analyzed (Focus on problems- No derivations)
- To develop the students ability to deal with numerical and quantitative issues
- To enable the use of statistical, graphical and algebraic techniques wherever relevant.

UNIT - I 12 Hours

Sample spaces - Events - Axiomatic approach to Probability - Conditional Probability - Independent Events -Bayes' Formula - Random Variables - Continuous and Discrete Random Variables - Distribution Function of a Random Variables - Expectation, Variance - Coefficient of Variation - Chebyshev's Inequality.

UNIT - II 12 Hours

Bivariate Distribution – Conditional and Marginal Distributions – **Discrete Distributions:** Discrete, Uniform, Binomial, Poisson and Geometric Distributions – **Continuous Distributions**: Uniform, Normal, Exponential and Gamma Distributions (only simple problems).

UNIT – III 12 Hours

Correlation: Bivariate Data - Correlation between Two Variables - Covariance between Two Variables - Karl Pearson's Coefficient of Correlation - Rank Correlation. **Regression Analysis**: Simple Linear Regression - Regression Equations.

UNIT - IV 12 Hours

Concepts of Sampling Distributions and Standard Error -Point Estimation (Concepts Only) - Interval Estimation of Mean and Proportion. Tests of Hypotheses - Critical Region - Two Types of Errors - Level of Significance - Power of the Test - Large Sample Tests for Mean and Proportion - Exact Tests Based on Normal, t, f and Chi-Square Distributions. The method of least squares

UNIT - V 12 Hours

Basic Principles of Experimentation – Analysis of Variance – One Way and Two Way Classifications – Computing Randomized Design – Randomized Block Design.

TEXT BOOK

1. Gupta S.C and Kapoor V.K, "Fundamentals of Mathematical Statistics", 11th Edition, Sultan Chand & Sons, India, 2007.

REFERENCE BOOKS

- 1. P.R. Vital, Mathematical Statistics, Marghan Publication, 2004.
- 2. T.K.V. Iyengar "Probability & Statistics for MCA". S. Chand & company, New Delhi, 2009 edition.
- 3. Trivedi, K.S, "Probability and Statistics with Reliability, Queuing and Computer Science Applications", Prentice Hall India, 1994.
- 4. James T. McClave and Terry Sincich, "Statistics", 12th Edition, Pearson Education, India, 2013.

5. Erwin Miller and John E.Freund, "Probability and Statistics for Engineers", 7th Edition, Pearson Education, India, 2017.

WEB REFERENCES

- 1. https://nptel.ac.in/courses/111/105/111105041/
- 2. https://nptel.ac.in/courses/111/105/111105043/
- 3. https://nptel.ac.in/courses/110/106/110106064/

METHODOLOGY OF TEACHING

Class Lecturers, Assignments, exercises, Discussions, seminars, quiz and assessments

COURSE OUTCOMES (COs)

Upon completion of this course, the students are able to

СО	COURSE OUTCOME	K- LEVELS
CO1	Recall the concepts of sample spaces, events, axiomatic approach, conditional probability, Bayes' theorem. Summarize the random variables, expectation and variance. Demonstrate the chebyshev's inequality	K1, K2, K4
CO2	Distinguish Discrete and continuous distributions. Solve the real time problems involving various distributions like Binomial, Poisson and normal distributions.	K2, K3, K4
CO3	Explain the concept of Bivariate analysis and point out the importance of correlation analysis, Regression analysis and various curves using method of least squares.	K1, K2, K3, K4
CO4	Explain the concept of Bivariate analysis and point out the importance of correlation analysis, Regression analysis and various curves using method of least squares.	K1, K3
CO5	Differentiate large and small samples. Compare the various parametric tests like Z-test, t-test, F test by giving practical examples. Explain the non-parametric chi square test with illustrated examples	K1,K2, K4
CO6	Restate the analysis of variance and classify the one way and two classifications. Categorize the computing randomized design and randomized block design. Define time series and list the components of time series. Illustrate the measurement of trend and seasonal variations.	K1,K2,K3, K5
K1 – 1	Remembering, K2 – Understanding, K3 –Applying, K4 –Analysing, K5 –Evaluating,	K6 –Creating

CO-PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	3	2	3	2	2
CO2	2	3	1	3	1	1
CO3	3	3	3	2	2	1
CO4	3	3	2	1	3	1
CO5	3	3	2	2	2	1
CO6	3	2	2	2	2	1
Total	16	20	14	13	12	6
Average	2.6	3.3	2.3	2.1	2	1

Level of Correlation between PSO's and CO's

- 1- Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
				Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	C	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

	Third Semester					
Course Title	Course Title DIGITAL IMAGE PROCESSING LAB					
Course Code	Course Code 22PCCSC5					
Course	Core category	No. of Credits	No. of Hrs / Week	Total Marks		
number				(Internal +External)		
CC – XIV	Core	3	4	40+60		

COURSE OBJECTIVES

- Apply basics of Digital Image Processing to implement Relationships between Pixels.
- Apply the contrast stretching methods on low contrast image, Histogram, and Histogram Equalization.
- Implementation of smoothing and sharpening filters.
- To implement image restoring techniques.

LIST OF EXPERIMENTS [MATLAB]

- 1. Simulation and Display of an Image, Negative of an Image(Binary & Gray Scale)
- 2. Implementation of Relationships between Pixels
- 3. Implementation of Transformations of an Image
- 4. Contrast stretching of a low contrast image, Histogram, and Histogram Equalization
- 5. Display of bit planes of an Image
- 6. Display of FFT(1-D & 2-D) of an image
- 7. Computation of Mean, Standard Deviation, Correlation coefficient of the given Image
- 8. Implementation of Image Smoothening Filters(Mean and Median filtering of an Image)
- 9. Implementation of image sharpening filters and Edge Detection using Gradient Filters
- 10. Image Compression by DCT, DPCM, HUFFMAN coding
- 11. Implementation of image restoring techniques
- 12. Implementation of Image Intensity slicing technique for image enhancement
- 13. Canny edge detection Algorithm

COURSE OUTCOME (COs)

At the end of the Course, the Student will be able to:

CO	COURSE OUTCOME	K- LEVELS			
CO1	Recall the basics of Digital Image Processing to summarize their functional operation.	K1,K2			
CO2	Experiment with images using the techniques of smoothing, sharpening and enhancement.	К3			
CO3	Discover the applications of image compression and recognition.	K4			
K1 – Remembering, K2– Understanding, K3 – Applying, K4 – Analysing, K5– Evaluating, K6–					
Creating					

CO- PO Mapping (Course Articulation Matrix)

CO / PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	3	2	2	1
CO2	3	2	2	3	1	1
CO3	3	3	3	2	2	1
Total	9	8	8	7	5	3
Average	3	2.67	2.67	1.4	2.3	1

Level of Correlation between PSO's and CO's

- 1-Low
- 2-Medium
- 3 High
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
				Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	C	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

Third Semester							
Course Title CYBER SECURITY							
Course Code	Course Code 22PCCSD2						
Course No	Course Category	No of Credits	No of hrs / week	Total Marks			
	Core / Elective			(Internal +			
				External)			
EDS - II		3	2	25+75 = 100			

COURSE OBJECTIVES

- To Understand the basic concepts of security and various attacks, prevention of virus, privacy in computing, legal and ethical issues in computer security.
- To gain knowledge by introducing and researching state-of-the-art in computer security, different types of malicious codes.
- To expose the students implement privacy policies in computer systems and to protect programs from malicious attacks

UNIT – I 6 Hours

Security Problem in Computing: Secure- Attacks - The meaning of Computer Security-Confidentiality - Integrity- Availability - Computer Criminals.

UNIT – II 6 Hours

Program Security: Secure Programs – Fixing Faults- Unexpected Behavior – Types of Flows- Viruses and other Malicious code: Kinds of Malicious code- Document viruses- Home for viruses – Prevention of virus Infection.

UNIT – III 6 Hours

Administering Security: Organizational security Policies – Physical Security: Natural Disasters – Power Loss – Surge Suppressor- Human vandals- contingency planning

UNIT – IV 6 Hours

Privacy in Computing: Privacy concepts – Privacy principles and concepts – Fair information Policies – controls on commercial websites – Government and Privacy.

UNIT – V 6 Hours

Legal and Ethical Issues in Computer Security: Protecting programs and Data- Copyrights – Patents- Rights of employees and employers – Ownership of Products.

TEXT BOOK

1. Charles P. Pfleeger, Shari Lawrence Pfleeger, "Security in Computing", Fourth Edition, Pearson ,2009.

REFERENCE BOOKS

- 1. William Stallings, "Cryptography and Network Security", PHI, 2006
- 2. Bruce Schneier, "Applied Cryptography", 2nd Edition, Wiley, 2006.3.
- 3. Bruce Schneier and Niels Ferguson, "Practical Cryptography", Wiley, 2003

WEB REFERENCES

- 1. https://www.edureka.co/blog/what-is-cybersecurity/
- 2. https://www.javatpoint.com/cyber-security-tutorial
- 3. https://www.geeksforgeeks.org/cyber-system-security/
 - 4.https://www.tutorialspoint.com/fundamentals_of_science_and_technology/cyber_crime_and _cyber_security.htm

METHODOLOGY OF TEACHING

Class Lecturers, Assignments, exercises, Discussions, seminars, quiz and assessments

COURSE OUTCOME (COs)

Upon completion of this course, the students are able to

CO	COURSE OUTCOME	K- LEVELS				
CO1	Find out the basic concepts of computer security, classify the types	K1, K2, K3				
	of computer attack and identify the computer criminals.					
CO2	Find out how to secure programs, apply the process of fixing	K1, K2, K3, K4,				
	faults, classify the different types of viruses and analyze the ways	K5				
	to prevent virus infections and discuss on it.					
CO3	Classify the different types of organizational security policies, find	K1, K2, K3, K4,				
	out the method of applying the physical security and	K5, K6				
	analyze it.					
CO4	Determine the security problems faced due to natural disasters	K1, K2, K3, K4,				
		K5, K6				
CO5	Define the legal and Ethical issues in computer security and	K1, K2				
	explain the various security aspects like copyrights, patents,					
	identify the rights of employees and employers and ownership of					
	products and analyze					
K1 – Rei	K1 – Remembering, K2– Understanding, K3 – Applying, K4 – Analysing, K5–Evaluating, K6–					
Creating						

CO-PSO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	3	2	3	2	2
CO2	2	3	1	3	1	1
CO3	3	3	3	2	2	1
CO4	3	3	2	1	3	1
CO5	3	3	2	2	2	1
CO6	3	2	2	2	2	1
Total	16	20	14	13	12	6
Average	2.6	3.3	2.3	2.1	2	1

- 1- Low,
- 2 Medium,
- 3 High,
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
				Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	C	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

Third Semester						
Course Title EMBEDDED SYSTEMS						
Course Code	ode 22PCCSE4A					
Course No	Course Category Core / Elective	No of Credits	No of hrs / week	Total Marks (Internal + External)		
CEC-IV	Elective	3	4	25+75 = 100		

COURSE OBJECTIVES

- Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
- Describe the hardware software co-design and firmware design approaches.
- Know the RTOS internals, multitasking, task scheduling, communication and synchronization
- Learn the development life cycle of Embedded System

UNIT – I 12 Hours

Introduction to Embedded system - Embedded system vs General computing systems - History - Classification - Major Application Areas- Purpose of Embedded systems - Smart running shoes: The innovative bonding of lifestyle with embedded technology Characteristics and Quality Attributes of Embedded systems

UNIT – II 12 Hours

Elements of an Embedded system - core of the embedded system: General purpose and domain specific processors, ASICs, PLDs, COTS - Memory - Sensors and Actuators - Communication Interface: Onboard and External Communication Interfaces — Embedded Firmware - Reset circuit, Brown- out protection circuit, Oscillator unit, Real-time clock, and Watchdog timer - PCB and Passive Components

UNIT – III 12 Hours

Embedded Systems - Washing machine: Application-specific -Automotive: Domain specific. Hardware Software Co-Design - Computational Models - Embedded Firmware Design Approaches - Embedded Firmware Development Languages - Integration and testing of Embedded Hardware and firmware.

UNIT – IV 12 Hours

RTOS based Embedded System Design: Operating System Basics -Types of operating Systems - Tasks, process and Threads -Multiprocessing and Multitasking - Task scheduling - Task Communication - Task Synchronization - Device Drivers - choosing an RTOS.

UNIT – V 12 Hours

Components in embedded system development environment, Files generated during compilation, simulators, emulators and debugging -Objectives of Embedded product Development Life Cycle – Different Phases of EDLC - EDLC Approaches - Trends in Embedded Industry -Case Study: Digital Clock.

TEXT BOOK

1. K. V. Shibu, "Introduction to embedded systems", TMH Education Pvt. Ltd. 2009.

REFERENCE BOOKS

- 1.Raj Kamal, "Embedded Systems: Architecture, Programming and Design", TMH. Second Edition 2009
- 2. Frank Vahid, Tony Givargis, "Embedded System Design", John Wiley,

Third Edition 2006.

- 3. Cliff Young, Faraboschi Paolo, and Joseph A. Fisher, "Embedded Computing: A VLIW Approach to Architecture, Compilers and Tools", Morgan Kaufmann Publishers, An imprint of Elsevier, 2005.
- 4. David E. Simon, "An Embedded Software Primer" Pearson Education, 1999 WEB REFERENCES
 - 1. https://www.tutorialspoint.com/embedded_systems/es_overview.ht m
 - 2. https://www.javatpoint.com/embedded-system-tutorial
 - 3. https://nptel.ac.in/courses/108/102/108102045/
 - 4. https://www.codrey.com/embedded-systems/embedded-systems- introduction/

METHODOLOGY OF TEACHING

Class Lecturers, Assignments, Group Discussion, Quiz, Seminar

Course Outcomes (Cos)

Upon completion of this course, the students are able to

	epon completion of this course, the students are usie to	
CO	COURSE OUTCOME	K- LEVELS
CO1	Find out the basics of embedded system and explain the purpose,	K1,K2,K3,K4
	characteristics and identify its application areas and analyze it.	
CO2	Explain the general purpose and specific processors of embedded system,	K1, K2
	and find out the sensors, actuators and communication interfaces	
CO3	Apply the fundamental knowledge on the applications of embedded	K1,K2,K3,K4,
	systems in various devices, demonstrate how to develop the hardware	K5,K6
	and software for embedded systems in specific programming languages,	
	analyze and justify it.	
CO4	Explain RTOS based embedded design, analyze the various types of	K1,K2,K3,K4,
	operating systems, find out the different RTOS, choose an RTOS for	K5
	embedded systems and evaluate it.	
CO5	Define the various components of embedded systems, and explain the	K1 K2 K3
	objectives of Embedded product development Life cycle (EDLC), identify	
	its phases, through case study and recent trends in embedded industry.	
K1 – F	Remembering, K2- Understanding, K3-Applying, K4-Analysing, K5-Evalue	uating, K6–
Creati	ng	-

CO-PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	1	1	3
CO2	3	3	2	1	1	3
CO3	3	3	2	1	1	3
CO4	3	3	2	1	1	3
CO5	3	3	2	1	1	3
Total	15	15	10	5	5	15
Average	3	3	2	1	1	3

- 1- Low,
- 2 Medium,
- 3 High
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
				Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	C	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

Third Semester						
Course Title WEB SERVICES						
Course Code	Course Code 22PCCSE4B					
Course No	Course Category Core / Elective	No of Credits	No of hrs / week	Total Marks (Internal + External)		
CEC-IV	Elective	3	4	25+75 = 100		

COURSE OBJECTIVES:

To enable the student to be familiar with distributed services, XML and web services. To study the use of web services in B2C and B2B applications

Unit – I 12 Hours

Overview of Distributed Computing. Introduction to web services – Industry standards, Technologies and concepts underlying web services – their support to web services. Applications that consume web services.

Unit – II 12 Hours

XML – its choice for web services – network protocols to back end databases- technologies – SOAP, WSDL – exchange of information between applications in distributed environment – locating remote web services – its access and usage. UDDI specification – an introduction.

Unit – III 12 Hours

A brief outline of web services – conversation – static and interactive aspects of system interface and its implementation, work flow – orchestration and refinement, transactions, security issues – the common attacks – security attacks facilitated within web services quality of services – Architecting of systems to meet users requirement with respect to latency, performance, reliability, QOS metrics, Mobile and wireless services – energy consumption, network bandwidth utilization, portals and services management.

Unit – IV 12 Hours

Building real world enterprise applications using web services – sample source codes to develop web services – steps necessary to build and deploy web services and client applications to meet customer s requirement – Easier development, customization, maintenance, transactional requirements, seamless porting to multiple devices and platforms.

Unit – V 12 Hours

Deployment of Web services and applications onto Tomcat application server and axis SOAP server (both are free wares) – Web services platform as a set of enabling technologies for XML based distributed computing

TEXT BOOKS

- 1. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services: An Architects Guide, Prentice Hall, Nov 2003.
- 2. Heather Williamson, "XML: The Complete Reference", Tata McGraw-Hill Education

India.

REFERENCE BOOKS

1. Martin Kalin, "Java Web Services: Up and Running", O'Reilly Publishers.

WEB REFERENCES

- 1. XML Soap (w3schools.com)
- 2. Apache Tomcat® Welcome!
 - 3. https://www.guru99.com/soap-simple-object-access- protocol.html

METHODOLOGY OF TEACHING

Class Lecturers, Assignments, Group Discussion, Quiz, Seminar

Course Outcomes (Cos)

Upon completion of this course, the students are able to

СО	COURSE OUTCOME	K- LEVELS
CO1	Introduce the Web Services. Identify the applications that consume web services. support web services.	K1,K2, K3, K4
CO2	Recognize XML web services. Acquire knowledge on SOAP, WSDL environment.	K1,K2, K3, K4
CO3	Understand different aspects of web services. Apply and Analyze various architecting of systems to meet user requirements. Evaluate the method for analyzing the user requirements.	K1,K2, K3, K4, K5
CO4	Recognize the real world applications using web services, necessary steps for deploying web services. Analyze and Evaluate client	K1, K2, K3, K4, K5
CO5	Understand and Apply concepts of Web Services and Applications. Recognize free web services. Analyze XML based distributed computing.	K1, K2, K3, K4

K1-Remembering , K2- Understanding , K3 –Applying ,K4 –Analysing , K5- Evaluating , K6- Creating

CO-PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	1	1	3
CO2	3	3	2	1	1	3
CO3	3	3	2	1	1	3
CO4	3	3	2	1	1	3
CO5	3	3	2	1	1	3
Total	15	15	10	5	5	15
Average	3	3	2	1	1	3

Level of Correlation between PSO's and CO's

- 1- Low,
- 2 Medium,
- 3 High, 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
				Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	C	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

Third Semester							
Course Title SOFT COMPUTING							
Course Code	Course Code 22PCCSE4C						
Course No	Course Category Core / Elective	No of Credits	No of hrs / week	(Internal +			
CEC-IV	Elective	3	4	External) 25+75 = 100			

Course Objectives:

- Develop the skills to gain a basic understanding of neural network theory and fuzzy logic theory.
- Introduce students to artificial neural networks and fuzzy theory from an engineering perspective.

Unit – I 12 Hours

Introduction: Soft Computing Constituents – Soft Computing Vs Hard Computing – Characteristics - Applications - Artificial Neural Network (ANN): Fundamental Concept – Application Scope – Basic Terminologies – Neural Network Architecture – Learning Process – Basic Models of ANN: McCulloch-Pitts Model – Hebb Network –Linear Separability.

Unit – II 12 Hours

Supervised Learning Networks: Perceptron Networks – Adaline and Madaline Networks – Back Propagation Network – Radial Basis Function Network. Associative Memory Networks – BAM – Hopfield Network - Boltzmann Machine. Unsupervised Learning Networks: Kohonen Self Organizing Network – Counter Propagation Network – ART Network.

Unit – III 12 Hours

Fuzzy Sets: Basic Concept – Crisp Set Vs Fuzzy Set - Operations on Fuzzy Set – Properties of Fuzzy Sets – Fuzzy Relations: Concept – Fuzzy Composition – Fuzzy Equivalence and Tolerance Relation - Membership Functions: Features – Fuzzification – Methods of Membership value assignments – Defuzzification – Methods.

Unit – IV 12 Hours

Fuzzy Arithmetic – Extension Principle – Fuzzy Measures – Fuzzy Rules and Fuzzy Reasoning: Fuzzy Propositions – Formation of Rules – Decomposition of Rules – Aggregation of Rules – Approximate Reasoning – Fuzzy Inference and Expert Systems – Fuzzy Decision Making – Fuzzy Logic Control Systems.

Unit – V 12 Hours

Genetic Algorithm: Fundamental Concept – Basic Terminologies – Traditional Vs Genetic Algorithm - Elements of GA - Encoding - Fitness Function – Genetic Operators: Selection – Cross Over - Inversion and Deletion - Mutation – Simple and General GA – The Schema Theorem - Classification of Genetic Algorithm – Genetic Programming – Applications of GA.

TEXT BOOK

1. S.N. Sivanandam, S.N. Deepa, "Principles of Soft Computing", Wiley India, 2007.

REFERENCE BOOK

1. S. Rajasekaran, G.A.V. Pai, "Neural Networks, Fuzzy Logic, Genetic Algorithms", Prentice Hall India, 2004.

WEB REFERENCES

- 1. https://www.javatpoint.com/what-is-soft-computing
- 2. https://www.tutorialspoint.com/fuzzy_logic/index.htm
- 3. https://www.javatpoint.com/artificial-neural-network-genetic- algorithm

METHODOLOGY OF TEACHING

Class Lecturers, Assignments, Group Discussion, Quiz, Seminar

Course Outcomes (Cos)

Upon completion of this course, the students are able to

CO	COURSE OUTCOME	K- LEVEL
CO1	Acquire knowledge on Artificial Neural Network and its Architecture and	K1, K2, K3
	able to explain the basic models of ANN. This helps to identify different	
	neural network architectures, algorithms and its applications.	
CO2	Understand neural network concept, identify and describe soft	K1, K2, K3, K4,
	computing techniques and their roles in building intelligent machines,	K5, K6
	analyse various supervised and unsupervised learning networks,	
	performance evaluation of different learning algorithms	
CO3	Acquaint with the fundamentals fuzzy logic concepts, fuzzy principles	K1, K2, K3
	and relations. It helps to experiment with how fuzzy logic is widely used	
	for commercial and practical purposes.	
CO4	Initiate to learn about the fuzzy arithmetic and fuzzy logic control	K1, K2, K3, K4
	systems, apply fuzzy rules and reasoning, examine how fuzzy logic is	
	applied with great success in various control applications.	
CO5	Recall artificial neural network, Understand the fundamental concept of	K1, K2, K3, K4,
	genetic algorithms, apply various genetic operators to Analyse the	K5
	genetic algorithms and compare with their applications.	
K1 - F	Remembering , K2– Understanding , K3 –Applying ,K4 –Analysing , K5–Eva	luating , K6–

K1 – Remembering, K2– Understanding, K3 – Applying, K4 – Analysing, K5– Evaluating, K6– Creating

CO-PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	1	1	3
CO2	3	3	2	1	1	3
CO3	3	3	2	1	1	3
CO4	3	3	2	1	1	3
CO5	3	3	2	1	1	3
Total	15	15	10	5	5	15
Average	3	3	2	1	1	3

- 1-Low,
- 2 Medium,
- 3 High
- 0 No Correlation

Knowledge Level	Section	Marks	Description	Total
			_	Marks
K1, K2, K3, K4	A	10 x 2	Short Answer	20
	(Answer all the		(Two questions	
	questions)		from each unit)	
K1, K2, K3, K4,	В	5 x 5	Question (a) OR	25
K5	(INTERNAL		(b)	
	CHOICE)		from the same	
	EITHER (a) OR (b)		Unit	
			and same K Level	
K2, K3, K4, K5,	C	3 x 10	One questions	30
K6	(Answer any three		from each unit	
	question from five		(No unit missing)	
	questions)			
	75			

SEMESTER-IV

Fourth Semester						
Course Title PROJECT WORK						
Course Code 22PDCSP1						
Course No	Course Category Core / Elective /	No of Credits	No of hrs /week	Total marks (Internal+External)		
CEC-V	Core	15	*	75 + 225=300		

COURSE OBJECTIVES

Each student will develop and implement individually a Project work which is an application (software or hardware or both) based on any emerging latest technologies. The Project work is to be carried out either in an R & D section of any Industry or Research Institute or University or in the Institute itself (i.e., in which the candidate is studying) within the duration of IV Semester. The Project work report shell be submitted through the Guides / Supervisors to the Head of the Department and then to this College not later than 20th April.

COURSE OUTCOMES (COs)

Upon completion of this course, the students

CO	COURSE OUTCOME	K- LEVELS		
CO1	Identify the problem by applying acquired knowledge. Learn to apply the knowledge gained through various courses in solving a real life problem.	K1,K2,K3,K4,K5,K6		
CO2	Analyze and categorize executable project modules after considering risks. Practice different phases of software/system development life cycle.	K1,K2,K3,K4,K5,K6		
CO3	Choose efficient tools for designing project modules. To introduce the student to a professional environment and/or style typical of a global IT industry.	K1,K2,K3,K4,K5,K6		
CO4	Combine all the modules through effective team work after efficient testing.	K1,K2,K3,K4,K5,K6		
CO5	Able to prepare effective, real-life, technical documentation. To provide an opportunity to practice time, resource and person management.	K1,K2,K3,K4,K5,K6		

K1 – Remembering, **K2** – Understanding, **K3** – Applying, **K4** – Analysing, **K5** – Evaluating, **K6** – Creating.

.

CO-PSO MAPPING(Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	3	3	2	2
CO2	3	2	2	3	3	2
CO3	3	3	3	2	2	1
CO4	3	3	3	2	3	3
CO5	3	2	3	3	2	2
Total	15	13	14	13	12	10
Average	3	2.6	2.8	2.6	2.4	2

- 1- Low,

- 2 Medium , 3 High , 0 No Correlation